Heralding two-photon and four-photon path entanglement on a chip
Generating quantum entanglement is not only an important scientific endeavor, but will be essential to realizing quantum-enhanced technologies, in particular, quantum-enhanced measurements with precision beyond classical limits. We investigate the heralded generation of multiphoton entanglement for...
Saved in:
Published in: | Physical review letters 2011-10, Vol.107 (16), p.163602-163602, Article 163602 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Generating quantum entanglement is not only an important scientific endeavor, but will be essential to realizing quantum-enhanced technologies, in particular, quantum-enhanced measurements with precision beyond classical limits. We investigate the heralded generation of multiphoton entanglement for quantum metrology using a reconfigurable integrated waveguide device in which projective measurement of auxiliary photons heralds the generation of path-entangled states. We use four and six-photon inputs, to analyze the heralding process of two- and four-photon NOON states-a superposition of N photons in two paths, capable of enabling phase supersensitive measurements at the Heisenberg limit. Realistic devices will include imperfections; as part of the heralded state preparation, we demonstrate phase superresolution within our chip with a state that is more robust to photon loss. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/physrevlett.107.163602 |