Loading…
Single-photon diode by exploiting the photon polarization in a waveguide
A single-photon optical diode operates on individual photons and allows unidirectional propagation of photons. By exploiting the unique polarization configuration in a waveguide, we show here that a single-photon optical diode can be accomplished by coupling a quantum impurity to a passive, linear o...
Saved in:
Published in: | Physical review letters 2011-10, Vol.107 (17), p.173902-173902, Article 173902 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A single-photon optical diode operates on individual photons and allows unidirectional propagation of photons. By exploiting the unique polarization configuration in a waveguide, we show here that a single-photon optical diode can be accomplished by coupling a quantum impurity to a passive, linear optical waveguide which possesses a locally planar, circular polarization. We further show that the diode provides a near unitary contrast for an input pulse with finite frequency bandwidth and can be implemented in a variety of types of waveguides. Moreover, the performance of the diode is not sensitive to the intrinsic dissipation of the quantum impurity. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.107.173902 |