Loading…

Reactive chemical doping of the Bi2Se3 topological insulator

Using angular resolved photoemission spectroscopy we studied the evolution of the surface electronic structure of the topological insulator Bi(2)Se(3) as a function of water vapor exposure. We find that a surface reaction with water induces a band bending, which shifts the Dirac point deep into the...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2011-10, Vol.107 (17), p.177602-177602
Main Authors: Benia, Hadj M, Lin, Chengtian, Kern, Klaus, Ast, Christian R
Format: Article
Language:English
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Using angular resolved photoemission spectroscopy we studied the evolution of the surface electronic structure of the topological insulator Bi(2)Se(3) as a function of water vapor exposure. We find that a surface reaction with water induces a band bending, which shifts the Dirac point deep into the occupied states and creates quantum well states with a strong Rashba-type splitting. The surface is thus not chemically inert, but the topological state remains protected. The band bending is traced back to Se abstraction, leaving positively charged vacancies at the surface. Because of the presence of water vapor, a similar effect takes place when Bi(2)Se(3) crystals are left in vacuum or cleaved in air, which likely explains the aging effect observed in the Bi(2)Se(3) band structure.
ISSN:1079-7114
DOI:10.1103/PhysRevLett.107.177602