Loading…
Antiinflammatory effects of matrine in LPS-induced acute lung injury in mice
Matrine is one of the main active components of Chinese herb Sophora flavescens Ait (Kushen), which has been demonstrated to be effective in suppressing inflammation. The aim of the present study is to investigate the effect of matrine on LPS-induced lung injury. Lung injury was assessed by histolog...
Saved in:
Published in: | European journal of pharmaceutical sciences 2011-12, Vol.44 (5), p.573-579 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Matrine is one of the main active components of Chinese herb Sophora flavescens Ait (Kushen), which has been demonstrated to be effective in suppressing inflammation. The aim of the present study is to investigate the effect of matrine on LPS-induced lung injury. Lung injury was assessed by histological study and wet to dry weight ratios, as well as cell count and protein content in bronchoalveolar lavage fluid. We also detected MPO activity reflecting neutrophil infiltration and MDA activity examining oxidative stress in lung tissues. Cytokines and ROS production in cells were monitored by ELISA and flow cytometry, respectively. The results showed that high dose of matrine significantly reduced the mortality rate of mice with LPS administration. Treatment with matrine improved LPS-induced lung histopathologic changes, alleviated pulmonary edema and lung vascular leak, inhibited MPO and MDA activity,and reduced the production of inflammatory mediators including TNF-α, IL-6 and HMGB1. In vitro, matrine administration reduced the production of ROS and inflammatory factors, which was possibly associated with inhibition of NF-κB. In conclusion, the current study demonstrated that matrine exhibited a protective effect on LPS-induced acute lung injury by inhibiting of the inflammatory response, which may involve the suppression of ROS and tissue oxidative stress. |
---|---|
ISSN: | 0928-0987 1879-0720 |
DOI: | 10.1016/j.ejps.2011.09.020 |