Loading…

Paclobutrazol Arrests Vegetative Growth and Unveils Unexpressed Yield Potential of Jatropha curcas

Although the process for making EN 14214 grade Jatropha methyl ester (biodiesel) capable of running unmodified diesel engines in neat form has been demonstrated, getting higher seed yield from Jatropha shrubs in wastelands is critical to the success of Jatropha biodiesel. But, low productivity is in...

Full description

Saved in:
Bibliographic Details
Published in:Journal of plant growth regulation 2010-09, Vol.29 (3), p.307-315
Main Authors: Ghosh, Arup, Chikara, Jitendra, Chaudhary, D. R., Prakash, Aruna R., Boricha, G., Zala, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Although the process for making EN 14214 grade Jatropha methyl ester (biodiesel) capable of running unmodified diesel engines in neat form has been demonstrated, getting higher seed yield from Jatropha shrubs in wastelands is critical to the success of Jatropha biodiesel. But, low productivity is inherent to many Jatropha curcas germplasms and raising large-scale plantations using such untested planting material can lead to wasteful expenditures. Unreliable and poor flowering and fruiting are important factors responsible for low productivity in the species. Although much is known about growth retardants applied to field and horticultural crops, their role in improving the seed productivity of Jatropha has never been explored. Here we report for the first time that paclobutrazol could be an extremely useful chemical, whose dose and time of application, if optimized, can significantly reduce unwanted vegetative growth, with concomitant improvement in yield and seed oil content of Jatropha . In the year following application of paclobutrazol, an unexpected increase in seed yield, as high as 1127% relative to controls, was obtained from one such unproductive Jatropha germplasm. We hypothesize that low seed production in this species may be a result of excess vegetative growth caused by an unfavorable endogenous hormonal configuration which competes with growth and development of flower, fruit, or seed. This undesired physiological state can be reversed by paclobutrazol application to achieve maximum oil yield from this energy shrub that holds great promise in the future.
ISSN:0721-7595
1435-8107
DOI:10.1007/s00344-010-9137-0