Loading…

The N-terminal alanine-extended GLP-1/IgG-Fc fusion protein confers resistance to DPP-IV and reduces serum glucose level in db/db mice

The aim of this study was to develop novel long-acting glucagon-like peptide 1 (GLP-1) analogs resistant to dipeptidyl peptidase-IV (DPP-IV). We constructed three fusion proteins comprising GLP-1 and the human immunoglobulin gamma heavy chain (IgG-Fc); wild-type GLP-1 and IgG-Fc (GLP-1/IgG-Fc) and t...

Full description

Saved in:
Bibliographic Details
Published in:Regulatory peptides 2011-10, Vol.170 (1), p.1-3
Main Authors: Chung, Hye-Shin, Oh, Ji-Yeon, Yoo, Seung-Bum, Lee, Sang Mee, Cho, Heung-Soo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The aim of this study was to develop novel long-acting glucagon-like peptide 1 (GLP-1) analogs resistant to dipeptidyl peptidase-IV (DPP-IV). We constructed three fusion proteins comprising GLP-1 and the human immunoglobulin gamma heavy chain (IgG-Fc); wild-type GLP-1 and IgG-Fc (GLP-1/IgG-Fc) and two N-terminal-extended fusion proteins in which an additional Ala (A) or Gly (G) was located on the N-terminus of GLP-1 (A-GLP-1/IgG-Fc or G-GLP-1/IgG-Fc). The fusion proteins expressed in CHO-K1 cells were secreted into medium and purified by Protein A affinity chromatography. Here, we show that the Ala or Gly-extended GLP-1/IgG-Fc fusion protein is resistant to DPP-IV and has increased half-life in vivo. To our surprise, the A-GLP-1/IgG-Fc fusion protein was more effective than wildtype GLP-1/IgG-Fc fusion protein in reducing blood glucose levels in db/db mice. Our findings suggest that the A-GLP-1/IgG-Fc fusion protein could be a potential long-acting GLP-1 receptor agonist for the treatment of insulin-resistant type 2 diabetes.
ISSN:0167-0115
1873-1686
DOI:10.1016/j.regpep.2011.05.002