Loading…
Inhibition of Protein Synthesis by TOR Inactivation Revealed a Conserved Regulatory Mechanism of the BiP Chaperone in Chlamydomonas
The target of rapamycin (TOR) kinase integrates nutritional and stress signals to coordinately control cell growth in all eukaryotes. TOR associates with highly conserved proteins to constitute two distinct signaling complexes termed TORCI and TORC2. Inactivation of TORCI by rapamycin negatively reg...
Saved in:
Published in: | Plant physiology (Bethesda) 2011-10, Vol.157 (2), p.730-741 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c569t-f8212bc2ea15a775ae7586603290cc37d5cab1f702f69206dde91fa50370232d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c569t-f8212bc2ea15a775ae7586603290cc37d5cab1f702f69206dde91fa50370232d3 |
container_end_page | 741 |
container_issue | 2 |
container_start_page | 730 |
container_title | Plant physiology (Bethesda) |
container_volume | 157 |
creator | Díaz-Troya, Sandra Pérez-Pérez, María Esther Pérez-Martín, Marta Moes, Suzette Jeno, Paul Florencio, Francisco J. Crespo, José L. |
description | The target of rapamycin (TOR) kinase integrates nutritional and stress signals to coordinately control cell growth in all eukaryotes. TOR associates with highly conserved proteins to constitute two distinct signaling complexes termed TORCI and TORC2. Inactivation of TORCI by rapamycin negatively regulates protein synthesis in most eukaryotes. Here, we report that down-regulation of TOR signaling by rapamycin in the model green alga Chlamydomonas reinhardtii resulted in pronounced phosphorylation of the endoplasmic reticulum chaperone BiP. Our results indicated that Chlamydomonas TOR regulates BiP phosphorylation through the control of protein synthesis, since rapamycin and cycloheximide have similar effects on BiP modification and protein synthesis inhibition. Modification of BiP by phosphorylation was suppressed under conditions that require the chaperone activity of BiP, such as heat shock stress or tunicamycin treatment, which inhibits N-linked glycosylation of nascent proteins in the endoplasmic reticulum. A phosphopeptide localized in the substrate-binding domain of BiP was identified in Chlamydomonas cells treated with rapamycin. This peptide contains a highly conserved threonine residue that might regulate BiP function, as demonstrated by yeast functional assays. Thus, our study has revealed a regulatory mechanism of BiP in Chlamydomonas by phosphorylation/dephosphorylation events and assigns a role to the TOR pathway in the control of BiP modification. |
doi_str_mv | 10.1104/pp.111.179861 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_907173730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41435687</jstor_id><sourcerecordid>41435687</sourcerecordid><originalsourceid>FETCH-LOGICAL-c569t-f8212bc2ea15a775ae7586603290cc37d5cab1f702f69206dde91fa50370232d3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhiMEokvhyBHkC4JLiseO4-SCBBEfKxW1Wso5mjhO4yqxUzu7Us78cbzsssCF04w8jx751Zskz4FeANDs7TTFCRcgyyKHB8kKBGcpE1nxMFlRGndaFOVZ8iSEO0opcMgeJ2cMCiaAylXyY21705jZOEtcR669m7Wx5Nti514HE0izkJurDVlbVLPZ4S9wo3caB90SJJWzQftd3Df6djvg7PxCvmrVozVh3Cujh3ww16TqcdLeWU2iv-oHHJfWjc5ieJo86nAI-tlxniffP328qb6kl1ef19X7y1SJvJzTrmDAGsU0gkApBWopijyPGUuqFJetUNhAJynr8pLRvG11CR0KyuMTZy0_T94dvNO2GXWrtJ09DvXkzYh-qR2a-t-LNX1963Y1h5KJvIiC10eBd_dbHeZ6NEHpYUCr3TbUJZUgueQ0km_-S0IWu2AlK1hE0wOqvAvB6-70IaD1vuJ6muKE-lBx5F_-neJE_-40Aq-OAAaFQ-fRKhP-cJkoRc72aV4cuLsQWzvdM8h4DCv5TzfqudM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1400129282</pqid></control><display><type>article</type><title>Inhibition of Protein Synthesis by TOR Inactivation Revealed a Conserved Regulatory Mechanism of the BiP Chaperone in Chlamydomonas</title><source>JSTOR Archival Journals and Primary Sources Collection【Remote access available】</source><source>Oxford Journals Online</source><creator>Díaz-Troya, Sandra ; Pérez-Pérez, María Esther ; Pérez-Martín, Marta ; Moes, Suzette ; Jeno, Paul ; Florencio, Francisco J. ; Crespo, José L.</creator><creatorcontrib>Díaz-Troya, Sandra ; Pérez-Pérez, María Esther ; Pérez-Martín, Marta ; Moes, Suzette ; Jeno, Paul ; Florencio, Francisco J. ; Crespo, José L.</creatorcontrib><description>The target of rapamycin (TOR) kinase integrates nutritional and stress signals to coordinately control cell growth in all eukaryotes. TOR associates with highly conserved proteins to constitute two distinct signaling complexes termed TORCI and TORC2. Inactivation of TORCI by rapamycin negatively regulates protein synthesis in most eukaryotes. Here, we report that down-regulation of TOR signaling by rapamycin in the model green alga Chlamydomonas reinhardtii resulted in pronounced phosphorylation of the endoplasmic reticulum chaperone BiP. Our results indicated that Chlamydomonas TOR regulates BiP phosphorylation through the control of protein synthesis, since rapamycin and cycloheximide have similar effects on BiP modification and protein synthesis inhibition. Modification of BiP by phosphorylation was suppressed under conditions that require the chaperone activity of BiP, such as heat shock stress or tunicamycin treatment, which inhibits N-linked glycosylation of nascent proteins in the endoplasmic reticulum. A phosphopeptide localized in the substrate-binding domain of BiP was identified in Chlamydomonas cells treated with rapamycin. This peptide contains a highly conserved threonine residue that might regulate BiP function, as demonstrated by yeast functional assays. Thus, our study has revealed a regulatory mechanism of BiP in Chlamydomonas by phosphorylation/dephosphorylation events and assigns a role to the TOR pathway in the control of BiP modification.</description><identifier>ISSN: 0032-0889</identifier><identifier>ISSN: 1532-2548</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.111.179861</identifier><identifier>PMID: 21825107</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>antagonists & inhibitors ; Antibodies ; Binding Sites ; Biological and medical sciences ; Cell growth ; Chlamydomonas ; Chlamydomonas reinhardtii ; Chlamydomonas reinhardtii - drug effects ; Chlamydomonas reinhardtii - metabolism ; cycloheximide ; Cycloheximide - pharmacology ; dephosphorylation ; drug effects ; endoplasmic reticulum ; ENVIRONMENTAL STRESS AND ADAPTATION TO STRESS ; Eukaryotic cells ; Fundamental and applied biological sciences. Psychology ; Gels ; Gene expression regulation ; glycosylation ; Glycosylation - drug effects ; heat stress ; Heat-Shock Proteins ; Heat-Shock Proteins - metabolism ; Heat-Shock Response ; metabolism ; nutrition ; pharmacology ; Phosphorylation ; Plant cells ; Plant physiology and development ; Plants ; Protein Biosynthesis ; Protein Biosynthesis - drug effects ; Protein synthesis ; Protein Synthesis Inhibitors ; Protein Synthesis Inhibitors - pharmacology ; proteins ; Sirolimus ; Sirolimus - pharmacology ; Threonine ; TOR Serine-Threonine Kinases ; TOR Serine-Threonine Kinases - antagonists & inhibitors ; TOR Serine-Threonine Kinases - metabolism ; tunicamycin ; Tunicamycin - pharmacology ; Yeasts</subject><ispartof>Plant physiology (Bethesda), 2011-10, Vol.157 (2), p.730-741</ispartof><rights>2011 American Society of Plant Biologists</rights><rights>2015 INIST-CNRS</rights><rights>2011 American Society of Plant Biologists. All rights reserved. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c569t-f8212bc2ea15a775ae7586603290cc37d5cab1f702f69206dde91fa50370232d3</citedby><cites>FETCH-LOGICAL-c569t-f8212bc2ea15a775ae7586603290cc37d5cab1f702f69206dde91fa50370232d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41435687$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41435687$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,58219,58452</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24595628$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21825107$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Díaz-Troya, Sandra</creatorcontrib><creatorcontrib>Pérez-Pérez, María Esther</creatorcontrib><creatorcontrib>Pérez-Martín, Marta</creatorcontrib><creatorcontrib>Moes, Suzette</creatorcontrib><creatorcontrib>Jeno, Paul</creatorcontrib><creatorcontrib>Florencio, Francisco J.</creatorcontrib><creatorcontrib>Crespo, José L.</creatorcontrib><title>Inhibition of Protein Synthesis by TOR Inactivation Revealed a Conserved Regulatory Mechanism of the BiP Chaperone in Chlamydomonas</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>The target of rapamycin (TOR) kinase integrates nutritional and stress signals to coordinately control cell growth in all eukaryotes. TOR associates with highly conserved proteins to constitute two distinct signaling complexes termed TORCI and TORC2. Inactivation of TORCI by rapamycin negatively regulates protein synthesis in most eukaryotes. Here, we report that down-regulation of TOR signaling by rapamycin in the model green alga Chlamydomonas reinhardtii resulted in pronounced phosphorylation of the endoplasmic reticulum chaperone BiP. Our results indicated that Chlamydomonas TOR regulates BiP phosphorylation through the control of protein synthesis, since rapamycin and cycloheximide have similar effects on BiP modification and protein synthesis inhibition. Modification of BiP by phosphorylation was suppressed under conditions that require the chaperone activity of BiP, such as heat shock stress or tunicamycin treatment, which inhibits N-linked glycosylation of nascent proteins in the endoplasmic reticulum. A phosphopeptide localized in the substrate-binding domain of BiP was identified in Chlamydomonas cells treated with rapamycin. This peptide contains a highly conserved threonine residue that might regulate BiP function, as demonstrated by yeast functional assays. Thus, our study has revealed a regulatory mechanism of BiP in Chlamydomonas by phosphorylation/dephosphorylation events and assigns a role to the TOR pathway in the control of BiP modification.</description><subject>antagonists & inhibitors</subject><subject>Antibodies</subject><subject>Binding Sites</subject><subject>Biological and medical sciences</subject><subject>Cell growth</subject><subject>Chlamydomonas</subject><subject>Chlamydomonas reinhardtii</subject><subject>Chlamydomonas reinhardtii - drug effects</subject><subject>Chlamydomonas reinhardtii - metabolism</subject><subject>cycloheximide</subject><subject>Cycloheximide - pharmacology</subject><subject>dephosphorylation</subject><subject>drug effects</subject><subject>endoplasmic reticulum</subject><subject>ENVIRONMENTAL STRESS AND ADAPTATION TO STRESS</subject><subject>Eukaryotic cells</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gels</subject><subject>Gene expression regulation</subject><subject>glycosylation</subject><subject>Glycosylation - drug effects</subject><subject>heat stress</subject><subject>Heat-Shock Proteins</subject><subject>Heat-Shock Proteins - metabolism</subject><subject>Heat-Shock Response</subject><subject>metabolism</subject><subject>nutrition</subject><subject>pharmacology</subject><subject>Phosphorylation</subject><subject>Plant cells</subject><subject>Plant physiology and development</subject><subject>Plants</subject><subject>Protein Biosynthesis</subject><subject>Protein Biosynthesis - drug effects</subject><subject>Protein synthesis</subject><subject>Protein Synthesis Inhibitors</subject><subject>Protein Synthesis Inhibitors - pharmacology</subject><subject>proteins</subject><subject>Sirolimus</subject><subject>Sirolimus - pharmacology</subject><subject>Threonine</subject><subject>TOR Serine-Threonine Kinases</subject><subject>TOR Serine-Threonine Kinases - antagonists & inhibitors</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><subject>tunicamycin</subject><subject>Tunicamycin - pharmacology</subject><subject>Yeasts</subject><issn>0032-0889</issn><issn>1532-2548</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kU1v1DAQhiMEokvhyBHkC4JLiseO4-SCBBEfKxW1Wso5mjhO4yqxUzu7Us78cbzsssCF04w8jx751Zskz4FeANDs7TTFCRcgyyKHB8kKBGcpE1nxMFlRGndaFOVZ8iSEO0opcMgeJ2cMCiaAylXyY21705jZOEtcR669m7Wx5Nti514HE0izkJurDVlbVLPZ4S9wo3caB90SJJWzQftd3Df6djvg7PxCvmrVozVh3Cujh3ww16TqcdLeWU2iv-oHHJfWjc5ieJo86nAI-tlxniffP328qb6kl1ef19X7y1SJvJzTrmDAGsU0gkApBWopijyPGUuqFJetUNhAJynr8pLRvG11CR0KyuMTZy0_T94dvNO2GXWrtJ09DvXkzYh-qR2a-t-LNX1963Y1h5KJvIiC10eBd_dbHeZ6NEHpYUCr3TbUJZUgueQ0km_-S0IWu2AlK1hE0wOqvAvB6-70IaD1vuJ6muKE-lBx5F_-neJE_-40Aq-OAAaFQ-fRKhP-cJkoRc72aV4cuLsQWzvdM8h4DCv5TzfqudM</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>Díaz-Troya, Sandra</creator><creator>Pérez-Pérez, María Esther</creator><creator>Pérez-Martín, Marta</creator><creator>Moes, Suzette</creator><creator>Jeno, Paul</creator><creator>Florencio, Francisco J.</creator><creator>Crespo, José L.</creator><general>American Society of Plant Biologists</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><scope>M7N</scope><scope>5PM</scope></search><sort><creationdate>20111001</creationdate><title>Inhibition of Protein Synthesis by TOR Inactivation Revealed a Conserved Regulatory Mechanism of the BiP Chaperone in Chlamydomonas</title><author>Díaz-Troya, Sandra ; Pérez-Pérez, María Esther ; Pérez-Martín, Marta ; Moes, Suzette ; Jeno, Paul ; Florencio, Francisco J. ; Crespo, José L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c569t-f8212bc2ea15a775ae7586603290cc37d5cab1f702f69206dde91fa50370232d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>antagonists & inhibitors</topic><topic>Antibodies</topic><topic>Binding Sites</topic><topic>Biological and medical sciences</topic><topic>Cell growth</topic><topic>Chlamydomonas</topic><topic>Chlamydomonas reinhardtii</topic><topic>Chlamydomonas reinhardtii - drug effects</topic><topic>Chlamydomonas reinhardtii - metabolism</topic><topic>cycloheximide</topic><topic>Cycloheximide - pharmacology</topic><topic>dephosphorylation</topic><topic>drug effects</topic><topic>endoplasmic reticulum</topic><topic>ENVIRONMENTAL STRESS AND ADAPTATION TO STRESS</topic><topic>Eukaryotic cells</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gels</topic><topic>Gene expression regulation</topic><topic>glycosylation</topic><topic>Glycosylation - drug effects</topic><topic>heat stress</topic><topic>Heat-Shock Proteins</topic><topic>Heat-Shock Proteins - metabolism</topic><topic>Heat-Shock Response</topic><topic>metabolism</topic><topic>nutrition</topic><topic>pharmacology</topic><topic>Phosphorylation</topic><topic>Plant cells</topic><topic>Plant physiology and development</topic><topic>Plants</topic><topic>Protein Biosynthesis</topic><topic>Protein Biosynthesis - drug effects</topic><topic>Protein synthesis</topic><topic>Protein Synthesis Inhibitors</topic><topic>Protein Synthesis Inhibitors - pharmacology</topic><topic>proteins</topic><topic>Sirolimus</topic><topic>Sirolimus - pharmacology</topic><topic>Threonine</topic><topic>TOR Serine-Threonine Kinases</topic><topic>TOR Serine-Threonine Kinases - antagonists & inhibitors</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><topic>tunicamycin</topic><topic>Tunicamycin - pharmacology</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Díaz-Troya, Sandra</creatorcontrib><creatorcontrib>Pérez-Pérez, María Esther</creatorcontrib><creatorcontrib>Pérez-Martín, Marta</creatorcontrib><creatorcontrib>Moes, Suzette</creatorcontrib><creatorcontrib>Jeno, Paul</creatorcontrib><creatorcontrib>Florencio, Francisco J.</creatorcontrib><creatorcontrib>Crespo, José L.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Díaz-Troya, Sandra</au><au>Pérez-Pérez, María Esther</au><au>Pérez-Martín, Marta</au><au>Moes, Suzette</au><au>Jeno, Paul</au><au>Florencio, Francisco J.</au><au>Crespo, José L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inhibition of Protein Synthesis by TOR Inactivation Revealed a Conserved Regulatory Mechanism of the BiP Chaperone in Chlamydomonas</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2011-10-01</date><risdate>2011</risdate><volume>157</volume><issue>2</issue><spage>730</spage><epage>741</epage><pages>730-741</pages><issn>0032-0889</issn><issn>1532-2548</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>The target of rapamycin (TOR) kinase integrates nutritional and stress signals to coordinately control cell growth in all eukaryotes. TOR associates with highly conserved proteins to constitute two distinct signaling complexes termed TORCI and TORC2. Inactivation of TORCI by rapamycin negatively regulates protein synthesis in most eukaryotes. Here, we report that down-regulation of TOR signaling by rapamycin in the model green alga Chlamydomonas reinhardtii resulted in pronounced phosphorylation of the endoplasmic reticulum chaperone BiP. Our results indicated that Chlamydomonas TOR regulates BiP phosphorylation through the control of protein synthesis, since rapamycin and cycloheximide have similar effects on BiP modification and protein synthesis inhibition. Modification of BiP by phosphorylation was suppressed under conditions that require the chaperone activity of BiP, such as heat shock stress or tunicamycin treatment, which inhibits N-linked glycosylation of nascent proteins in the endoplasmic reticulum. A phosphopeptide localized in the substrate-binding domain of BiP was identified in Chlamydomonas cells treated with rapamycin. This peptide contains a highly conserved threonine residue that might regulate BiP function, as demonstrated by yeast functional assays. Thus, our study has revealed a regulatory mechanism of BiP in Chlamydomonas by phosphorylation/dephosphorylation events and assigns a role to the TOR pathway in the control of BiP modification.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>21825107</pmid><doi>10.1104/pp.111.179861</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 2011-10, Vol.157 (2), p.730-741 |
issn | 0032-0889 1532-2548 1532-2548 |
language | eng |
recordid | cdi_proquest_miscellaneous_907173730 |
source | JSTOR Archival Journals and Primary Sources Collection【Remote access available】; Oxford Journals Online |
subjects | antagonists & inhibitors Antibodies Binding Sites Biological and medical sciences Cell growth Chlamydomonas Chlamydomonas reinhardtii Chlamydomonas reinhardtii - drug effects Chlamydomonas reinhardtii - metabolism cycloheximide Cycloheximide - pharmacology dephosphorylation drug effects endoplasmic reticulum ENVIRONMENTAL STRESS AND ADAPTATION TO STRESS Eukaryotic cells Fundamental and applied biological sciences. Psychology Gels Gene expression regulation glycosylation Glycosylation - drug effects heat stress Heat-Shock Proteins Heat-Shock Proteins - metabolism Heat-Shock Response metabolism nutrition pharmacology Phosphorylation Plant cells Plant physiology and development Plants Protein Biosynthesis Protein Biosynthesis - drug effects Protein synthesis Protein Synthesis Inhibitors Protein Synthesis Inhibitors - pharmacology proteins Sirolimus Sirolimus - pharmacology Threonine TOR Serine-Threonine Kinases TOR Serine-Threonine Kinases - antagonists & inhibitors TOR Serine-Threonine Kinases - metabolism tunicamycin Tunicamycin - pharmacology Yeasts |
title | Inhibition of Protein Synthesis by TOR Inactivation Revealed a Conserved Regulatory Mechanism of the BiP Chaperone in Chlamydomonas |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A13%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inhibition%20of%20Protein%20Synthesis%20by%20TOR%20Inactivation%20Revealed%20a%20Conserved%20Regulatory%20Mechanism%20of%20the%20BiP%20Chaperone%20in%20Chlamydomonas&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=D%C3%ADaz-Troya,%20Sandra&rft.date=2011-10-01&rft.volume=157&rft.issue=2&rft.spage=730&rft.epage=741&rft.pages=730-741&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.111.179861&rft_dat=%3Cjstor_pubme%3E41435687%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c569t-f8212bc2ea15a775ae7586603290cc37d5cab1f702f69206dde91fa50370232d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1400129282&rft_id=info:pmid/21825107&rft_jstor_id=41435687&rfr_iscdi=true |