Loading…

Inhibition of Protein Synthesis by TOR Inactivation Revealed a Conserved Regulatory Mechanism of the BiP Chaperone in Chlamydomonas

The target of rapamycin (TOR) kinase integrates nutritional and stress signals to coordinately control cell growth in all eukaryotes. TOR associates with highly conserved proteins to constitute two distinct signaling complexes termed TORCI and TORC2. Inactivation of TORCI by rapamycin negatively reg...

Full description

Saved in:
Bibliographic Details
Published in:Plant physiology (Bethesda) 2011-10, Vol.157 (2), p.730-741
Main Authors: Díaz-Troya, Sandra, Pérez-Pérez, María Esther, Pérez-Martín, Marta, Moes, Suzette, Jeno, Paul, Florencio, Francisco J., Crespo, José L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c569t-f8212bc2ea15a775ae7586603290cc37d5cab1f702f69206dde91fa50370232d3
cites cdi_FETCH-LOGICAL-c569t-f8212bc2ea15a775ae7586603290cc37d5cab1f702f69206dde91fa50370232d3
container_end_page 741
container_issue 2
container_start_page 730
container_title Plant physiology (Bethesda)
container_volume 157
creator Díaz-Troya, Sandra
Pérez-Pérez, María Esther
Pérez-Martín, Marta
Moes, Suzette
Jeno, Paul
Florencio, Francisco J.
Crespo, José L.
description The target of rapamycin (TOR) kinase integrates nutritional and stress signals to coordinately control cell growth in all eukaryotes. TOR associates with highly conserved proteins to constitute two distinct signaling complexes termed TORCI and TORC2. Inactivation of TORCI by rapamycin negatively regulates protein synthesis in most eukaryotes. Here, we report that down-regulation of TOR signaling by rapamycin in the model green alga Chlamydomonas reinhardtii resulted in pronounced phosphorylation of the endoplasmic reticulum chaperone BiP. Our results indicated that Chlamydomonas TOR regulates BiP phosphorylation through the control of protein synthesis, since rapamycin and cycloheximide have similar effects on BiP modification and protein synthesis inhibition. Modification of BiP by phosphorylation was suppressed under conditions that require the chaperone activity of BiP, such as heat shock stress or tunicamycin treatment, which inhibits N-linked glycosylation of nascent proteins in the endoplasmic reticulum. A phosphopeptide localized in the substrate-binding domain of BiP was identified in Chlamydomonas cells treated with rapamycin. This peptide contains a highly conserved threonine residue that might regulate BiP function, as demonstrated by yeast functional assays. Thus, our study has revealed a regulatory mechanism of BiP in Chlamydomonas by phosphorylation/dephosphorylation events and assigns a role to the TOR pathway in the control of BiP modification.
doi_str_mv 10.1104/pp.111.179861
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_907173730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41435687</jstor_id><sourcerecordid>41435687</sourcerecordid><originalsourceid>FETCH-LOGICAL-c569t-f8212bc2ea15a775ae7586603290cc37d5cab1f702f69206dde91fa50370232d3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhiMEokvhyBHkC4JLiseO4-SCBBEfKxW1Wso5mjhO4yqxUzu7Us78cbzsssCF04w8jx751Zskz4FeANDs7TTFCRcgyyKHB8kKBGcpE1nxMFlRGndaFOVZ8iSEO0opcMgeJ2cMCiaAylXyY21705jZOEtcR669m7Wx5Nti514HE0izkJurDVlbVLPZ4S9wo3caB90SJJWzQftd3Df6djvg7PxCvmrVozVh3Cujh3ww16TqcdLeWU2iv-oHHJfWjc5ieJo86nAI-tlxniffP328qb6kl1ef19X7y1SJvJzTrmDAGsU0gkApBWopijyPGUuqFJetUNhAJynr8pLRvG11CR0KyuMTZy0_T94dvNO2GXWrtJ09DvXkzYh-qR2a-t-LNX1963Y1h5KJvIiC10eBd_dbHeZ6NEHpYUCr3TbUJZUgueQ0km_-S0IWu2AlK1hE0wOqvAvB6-70IaD1vuJ6muKE-lBx5F_-neJE_-40Aq-OAAaFQ-fRKhP-cJkoRc72aV4cuLsQWzvdM8h4DCv5TzfqudM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1400129282</pqid></control><display><type>article</type><title>Inhibition of Protein Synthesis by TOR Inactivation Revealed a Conserved Regulatory Mechanism of the BiP Chaperone in Chlamydomonas</title><source>JSTOR Archival Journals and Primary Sources Collection【Remote access available】</source><source>Oxford Journals Online</source><creator>Díaz-Troya, Sandra ; Pérez-Pérez, María Esther ; Pérez-Martín, Marta ; Moes, Suzette ; Jeno, Paul ; Florencio, Francisco J. ; Crespo, José L.</creator><creatorcontrib>Díaz-Troya, Sandra ; Pérez-Pérez, María Esther ; Pérez-Martín, Marta ; Moes, Suzette ; Jeno, Paul ; Florencio, Francisco J. ; Crespo, José L.</creatorcontrib><description>The target of rapamycin (TOR) kinase integrates nutritional and stress signals to coordinately control cell growth in all eukaryotes. TOR associates with highly conserved proteins to constitute two distinct signaling complexes termed TORCI and TORC2. Inactivation of TORCI by rapamycin negatively regulates protein synthesis in most eukaryotes. Here, we report that down-regulation of TOR signaling by rapamycin in the model green alga Chlamydomonas reinhardtii resulted in pronounced phosphorylation of the endoplasmic reticulum chaperone BiP. Our results indicated that Chlamydomonas TOR regulates BiP phosphorylation through the control of protein synthesis, since rapamycin and cycloheximide have similar effects on BiP modification and protein synthesis inhibition. Modification of BiP by phosphorylation was suppressed under conditions that require the chaperone activity of BiP, such as heat shock stress or tunicamycin treatment, which inhibits N-linked glycosylation of nascent proteins in the endoplasmic reticulum. A phosphopeptide localized in the substrate-binding domain of BiP was identified in Chlamydomonas cells treated with rapamycin. This peptide contains a highly conserved threonine residue that might regulate BiP function, as demonstrated by yeast functional assays. Thus, our study has revealed a regulatory mechanism of BiP in Chlamydomonas by phosphorylation/dephosphorylation events and assigns a role to the TOR pathway in the control of BiP modification.</description><identifier>ISSN: 0032-0889</identifier><identifier>ISSN: 1532-2548</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.111.179861</identifier><identifier>PMID: 21825107</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>antagonists &amp; inhibitors ; Antibodies ; Binding Sites ; Biological and medical sciences ; Cell growth ; Chlamydomonas ; Chlamydomonas reinhardtii ; Chlamydomonas reinhardtii - drug effects ; Chlamydomonas reinhardtii - metabolism ; cycloheximide ; Cycloheximide - pharmacology ; dephosphorylation ; drug effects ; endoplasmic reticulum ; ENVIRONMENTAL STRESS AND ADAPTATION TO STRESS ; Eukaryotic cells ; Fundamental and applied biological sciences. Psychology ; Gels ; Gene expression regulation ; glycosylation ; Glycosylation - drug effects ; heat stress ; Heat-Shock Proteins ; Heat-Shock Proteins - metabolism ; Heat-Shock Response ; metabolism ; nutrition ; pharmacology ; Phosphorylation ; Plant cells ; Plant physiology and development ; Plants ; Protein Biosynthesis ; Protein Biosynthesis - drug effects ; Protein synthesis ; Protein Synthesis Inhibitors ; Protein Synthesis Inhibitors - pharmacology ; proteins ; Sirolimus ; Sirolimus - pharmacology ; Threonine ; TOR Serine-Threonine Kinases ; TOR Serine-Threonine Kinases - antagonists &amp; inhibitors ; TOR Serine-Threonine Kinases - metabolism ; tunicamycin ; Tunicamycin - pharmacology ; Yeasts</subject><ispartof>Plant physiology (Bethesda), 2011-10, Vol.157 (2), p.730-741</ispartof><rights>2011 American Society of Plant Biologists</rights><rights>2015 INIST-CNRS</rights><rights>2011 American Society of Plant Biologists. All rights reserved. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c569t-f8212bc2ea15a775ae7586603290cc37d5cab1f702f69206dde91fa50370232d3</citedby><cites>FETCH-LOGICAL-c569t-f8212bc2ea15a775ae7586603290cc37d5cab1f702f69206dde91fa50370232d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41435687$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41435687$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,58219,58452</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24595628$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21825107$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Díaz-Troya, Sandra</creatorcontrib><creatorcontrib>Pérez-Pérez, María Esther</creatorcontrib><creatorcontrib>Pérez-Martín, Marta</creatorcontrib><creatorcontrib>Moes, Suzette</creatorcontrib><creatorcontrib>Jeno, Paul</creatorcontrib><creatorcontrib>Florencio, Francisco J.</creatorcontrib><creatorcontrib>Crespo, José L.</creatorcontrib><title>Inhibition of Protein Synthesis by TOR Inactivation Revealed a Conserved Regulatory Mechanism of the BiP Chaperone in Chlamydomonas</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>The target of rapamycin (TOR) kinase integrates nutritional and stress signals to coordinately control cell growth in all eukaryotes. TOR associates with highly conserved proteins to constitute two distinct signaling complexes termed TORCI and TORC2. Inactivation of TORCI by rapamycin negatively regulates protein synthesis in most eukaryotes. Here, we report that down-regulation of TOR signaling by rapamycin in the model green alga Chlamydomonas reinhardtii resulted in pronounced phosphorylation of the endoplasmic reticulum chaperone BiP. Our results indicated that Chlamydomonas TOR regulates BiP phosphorylation through the control of protein synthesis, since rapamycin and cycloheximide have similar effects on BiP modification and protein synthesis inhibition. Modification of BiP by phosphorylation was suppressed under conditions that require the chaperone activity of BiP, such as heat shock stress or tunicamycin treatment, which inhibits N-linked glycosylation of nascent proteins in the endoplasmic reticulum. A phosphopeptide localized in the substrate-binding domain of BiP was identified in Chlamydomonas cells treated with rapamycin. This peptide contains a highly conserved threonine residue that might regulate BiP function, as demonstrated by yeast functional assays. Thus, our study has revealed a regulatory mechanism of BiP in Chlamydomonas by phosphorylation/dephosphorylation events and assigns a role to the TOR pathway in the control of BiP modification.</description><subject>antagonists &amp; inhibitors</subject><subject>Antibodies</subject><subject>Binding Sites</subject><subject>Biological and medical sciences</subject><subject>Cell growth</subject><subject>Chlamydomonas</subject><subject>Chlamydomonas reinhardtii</subject><subject>Chlamydomonas reinhardtii - drug effects</subject><subject>Chlamydomonas reinhardtii - metabolism</subject><subject>cycloheximide</subject><subject>Cycloheximide - pharmacology</subject><subject>dephosphorylation</subject><subject>drug effects</subject><subject>endoplasmic reticulum</subject><subject>ENVIRONMENTAL STRESS AND ADAPTATION TO STRESS</subject><subject>Eukaryotic cells</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gels</subject><subject>Gene expression regulation</subject><subject>glycosylation</subject><subject>Glycosylation - drug effects</subject><subject>heat stress</subject><subject>Heat-Shock Proteins</subject><subject>Heat-Shock Proteins - metabolism</subject><subject>Heat-Shock Response</subject><subject>metabolism</subject><subject>nutrition</subject><subject>pharmacology</subject><subject>Phosphorylation</subject><subject>Plant cells</subject><subject>Plant physiology and development</subject><subject>Plants</subject><subject>Protein Biosynthesis</subject><subject>Protein Biosynthesis - drug effects</subject><subject>Protein synthesis</subject><subject>Protein Synthesis Inhibitors</subject><subject>Protein Synthesis Inhibitors - pharmacology</subject><subject>proteins</subject><subject>Sirolimus</subject><subject>Sirolimus - pharmacology</subject><subject>Threonine</subject><subject>TOR Serine-Threonine Kinases</subject><subject>TOR Serine-Threonine Kinases - antagonists &amp; inhibitors</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><subject>tunicamycin</subject><subject>Tunicamycin - pharmacology</subject><subject>Yeasts</subject><issn>0032-0889</issn><issn>1532-2548</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kU1v1DAQhiMEokvhyBHkC4JLiseO4-SCBBEfKxW1Wso5mjhO4yqxUzu7Us78cbzsssCF04w8jx751Zskz4FeANDs7TTFCRcgyyKHB8kKBGcpE1nxMFlRGndaFOVZ8iSEO0opcMgeJ2cMCiaAylXyY21705jZOEtcR669m7Wx5Nti514HE0izkJurDVlbVLPZ4S9wo3caB90SJJWzQftd3Df6djvg7PxCvmrVozVh3Cujh3ww16TqcdLeWU2iv-oHHJfWjc5ieJo86nAI-tlxniffP328qb6kl1ef19X7y1SJvJzTrmDAGsU0gkApBWopijyPGUuqFJetUNhAJynr8pLRvG11CR0KyuMTZy0_T94dvNO2GXWrtJ09DvXkzYh-qR2a-t-LNX1963Y1h5KJvIiC10eBd_dbHeZ6NEHpYUCr3TbUJZUgueQ0km_-S0IWu2AlK1hE0wOqvAvB6-70IaD1vuJ6muKE-lBx5F_-neJE_-40Aq-OAAaFQ-fRKhP-cJkoRc72aV4cuLsQWzvdM8h4DCv5TzfqudM</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>Díaz-Troya, Sandra</creator><creator>Pérez-Pérez, María Esther</creator><creator>Pérez-Martín, Marta</creator><creator>Moes, Suzette</creator><creator>Jeno, Paul</creator><creator>Florencio, Francisco J.</creator><creator>Crespo, José L.</creator><general>American Society of Plant Biologists</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><scope>M7N</scope><scope>5PM</scope></search><sort><creationdate>20111001</creationdate><title>Inhibition of Protein Synthesis by TOR Inactivation Revealed a Conserved Regulatory Mechanism of the BiP Chaperone in Chlamydomonas</title><author>Díaz-Troya, Sandra ; Pérez-Pérez, María Esther ; Pérez-Martín, Marta ; Moes, Suzette ; Jeno, Paul ; Florencio, Francisco J. ; Crespo, José L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c569t-f8212bc2ea15a775ae7586603290cc37d5cab1f702f69206dde91fa50370232d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>antagonists &amp; inhibitors</topic><topic>Antibodies</topic><topic>Binding Sites</topic><topic>Biological and medical sciences</topic><topic>Cell growth</topic><topic>Chlamydomonas</topic><topic>Chlamydomonas reinhardtii</topic><topic>Chlamydomonas reinhardtii - drug effects</topic><topic>Chlamydomonas reinhardtii - metabolism</topic><topic>cycloheximide</topic><topic>Cycloheximide - pharmacology</topic><topic>dephosphorylation</topic><topic>drug effects</topic><topic>endoplasmic reticulum</topic><topic>ENVIRONMENTAL STRESS AND ADAPTATION TO STRESS</topic><topic>Eukaryotic cells</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gels</topic><topic>Gene expression regulation</topic><topic>glycosylation</topic><topic>Glycosylation - drug effects</topic><topic>heat stress</topic><topic>Heat-Shock Proteins</topic><topic>Heat-Shock Proteins - metabolism</topic><topic>Heat-Shock Response</topic><topic>metabolism</topic><topic>nutrition</topic><topic>pharmacology</topic><topic>Phosphorylation</topic><topic>Plant cells</topic><topic>Plant physiology and development</topic><topic>Plants</topic><topic>Protein Biosynthesis</topic><topic>Protein Biosynthesis - drug effects</topic><topic>Protein synthesis</topic><topic>Protein Synthesis Inhibitors</topic><topic>Protein Synthesis Inhibitors - pharmacology</topic><topic>proteins</topic><topic>Sirolimus</topic><topic>Sirolimus - pharmacology</topic><topic>Threonine</topic><topic>TOR Serine-Threonine Kinases</topic><topic>TOR Serine-Threonine Kinases - antagonists &amp; inhibitors</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><topic>tunicamycin</topic><topic>Tunicamycin - pharmacology</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Díaz-Troya, Sandra</creatorcontrib><creatorcontrib>Pérez-Pérez, María Esther</creatorcontrib><creatorcontrib>Pérez-Martín, Marta</creatorcontrib><creatorcontrib>Moes, Suzette</creatorcontrib><creatorcontrib>Jeno, Paul</creatorcontrib><creatorcontrib>Florencio, Francisco J.</creatorcontrib><creatorcontrib>Crespo, José L.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Díaz-Troya, Sandra</au><au>Pérez-Pérez, María Esther</au><au>Pérez-Martín, Marta</au><au>Moes, Suzette</au><au>Jeno, Paul</au><au>Florencio, Francisco J.</au><au>Crespo, José L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inhibition of Protein Synthesis by TOR Inactivation Revealed a Conserved Regulatory Mechanism of the BiP Chaperone in Chlamydomonas</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2011-10-01</date><risdate>2011</risdate><volume>157</volume><issue>2</issue><spage>730</spage><epage>741</epage><pages>730-741</pages><issn>0032-0889</issn><issn>1532-2548</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>The target of rapamycin (TOR) kinase integrates nutritional and stress signals to coordinately control cell growth in all eukaryotes. TOR associates with highly conserved proteins to constitute two distinct signaling complexes termed TORCI and TORC2. Inactivation of TORCI by rapamycin negatively regulates protein synthesis in most eukaryotes. Here, we report that down-regulation of TOR signaling by rapamycin in the model green alga Chlamydomonas reinhardtii resulted in pronounced phosphorylation of the endoplasmic reticulum chaperone BiP. Our results indicated that Chlamydomonas TOR regulates BiP phosphorylation through the control of protein synthesis, since rapamycin and cycloheximide have similar effects on BiP modification and protein synthesis inhibition. Modification of BiP by phosphorylation was suppressed under conditions that require the chaperone activity of BiP, such as heat shock stress or tunicamycin treatment, which inhibits N-linked glycosylation of nascent proteins in the endoplasmic reticulum. A phosphopeptide localized in the substrate-binding domain of BiP was identified in Chlamydomonas cells treated with rapamycin. This peptide contains a highly conserved threonine residue that might regulate BiP function, as demonstrated by yeast functional assays. Thus, our study has revealed a regulatory mechanism of BiP in Chlamydomonas by phosphorylation/dephosphorylation events and assigns a role to the TOR pathway in the control of BiP modification.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>21825107</pmid><doi>10.1104/pp.111.179861</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2011-10, Vol.157 (2), p.730-741
issn 0032-0889
1532-2548
1532-2548
language eng
recordid cdi_proquest_miscellaneous_907173730
source JSTOR Archival Journals and Primary Sources Collection【Remote access available】; Oxford Journals Online
subjects antagonists & inhibitors
Antibodies
Binding Sites
Biological and medical sciences
Cell growth
Chlamydomonas
Chlamydomonas reinhardtii
Chlamydomonas reinhardtii - drug effects
Chlamydomonas reinhardtii - metabolism
cycloheximide
Cycloheximide - pharmacology
dephosphorylation
drug effects
endoplasmic reticulum
ENVIRONMENTAL STRESS AND ADAPTATION TO STRESS
Eukaryotic cells
Fundamental and applied biological sciences. Psychology
Gels
Gene expression regulation
glycosylation
Glycosylation - drug effects
heat stress
Heat-Shock Proteins
Heat-Shock Proteins - metabolism
Heat-Shock Response
metabolism
nutrition
pharmacology
Phosphorylation
Plant cells
Plant physiology and development
Plants
Protein Biosynthesis
Protein Biosynthesis - drug effects
Protein synthesis
Protein Synthesis Inhibitors
Protein Synthesis Inhibitors - pharmacology
proteins
Sirolimus
Sirolimus - pharmacology
Threonine
TOR Serine-Threonine Kinases
TOR Serine-Threonine Kinases - antagonists & inhibitors
TOR Serine-Threonine Kinases - metabolism
tunicamycin
Tunicamycin - pharmacology
Yeasts
title Inhibition of Protein Synthesis by TOR Inactivation Revealed a Conserved Regulatory Mechanism of the BiP Chaperone in Chlamydomonas
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A13%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inhibition%20of%20Protein%20Synthesis%20by%20TOR%20Inactivation%20Revealed%20a%20Conserved%20Regulatory%20Mechanism%20of%20the%20BiP%20Chaperone%20in%20Chlamydomonas&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=D%C3%ADaz-Troya,%20Sandra&rft.date=2011-10-01&rft.volume=157&rft.issue=2&rft.spage=730&rft.epage=741&rft.pages=730-741&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.111.179861&rft_dat=%3Cjstor_pubme%3E41435687%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c569t-f8212bc2ea15a775ae7586603290cc37d5cab1f702f69206dde91fa50370232d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1400129282&rft_id=info:pmid/21825107&rft_jstor_id=41435687&rfr_iscdi=true