Loading…

Effect of different exercise protocols on histone acetyltransferases and histone deacetylases activities in rat hippocampus

Abstract Regular and moderate exercise has been considered an interesting neuroprotective strategy. Although the mechanisms by which physical exercise alters brain function are not clear, it appears that neuroprotective properties of exercise could be related to chromatin remodeling, specifically th...

Full description

Saved in:
Bibliographic Details
Published in:Neuroscience 2011-09, Vol.192, p.580-587
Main Authors: Elsner, V.R, Lovatel, G.A, Bertoldi, K, Vanzella, C, Santos, F.M, Spindler, C, de Almeida, E.F, Nardin, P, Siqueira, I.R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Regular and moderate exercise has been considered an interesting neuroprotective strategy. Although the mechanisms by which physical exercise alters brain function are not clear, it appears that neuroprotective properties of exercise could be related to chromatin remodeling, specifically the induction of histone acetylation through modulation of histone deacetylases (HDAC) and histone acetyltransferases (HAT) activities. The aim of the present work was to investigate the effect of exercise on HDAC and HAT activities in rat whole hippocampus at different times after treadmill. Adult male Wistar rats were assigned to non-exercised (sedentary) and exercised groups on different protocols: a single session of treadmill exercise (running for 20 min) and a chronic treadmill protocol (running once daily for 20 min, for 2 weeks). The effects of exercise on HDAC and HAT activities were measured immediately, 1 h and 18 h after the single session or the last training session of chronic treadmill exercise using specific assay kits. The single session of treadmill exercise reduced HDAC activity, increased HAT activity and increased the HAT/HDAC balance in rat hippocampus immediately and 1 h after exercise, an indicative of histone hyperacetylation status. The acetylation balance was also influenced by the circadian rhythm, since the HAT/HDAC ratio was significantly decreased in the early morning in all groups when compared to the afternoon. These data support the hypothesis that exercise neuroprotective effects may be related, at least in part, to acetylation levels through modulation of HAT and HDAC activities. We also demonstrated circadian changes in the HAT and HDAC activities and, consequently, in the acetylation levels.
ISSN:0306-4522
1873-7544
DOI:10.1016/j.neuroscience.2011.06.066