Loading…

Efficiency of rice straw lignocelluloses degradability by Aspergillus terreus ATCC 74135 in solid state fermentation

The ability of Aspergillus terreus for the production of cellulolytic enzymes and reduction of lignocellulose contents of rice straw in solid state fermentation was investigated in this study. Results suggested that, 8 days fermentation was appropriate, with enzymes activities as follows: FPase = 41...

Full description

Saved in:
Bibliographic Details
Published in:African journal of biotechnology 2011-05, Vol.10 (21), p.4428-4435
Main Authors: Jahromi, M F, Liang, J B, Rosfarizan, M, Goh, Y M, Shokryazdan, P, Ho, Y W
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The ability of Aspergillus terreus for the production of cellulolytic enzymes and reduction of lignocellulose contents of rice straw in solid state fermentation was investigated in this study. Results suggested that, 8 days fermentation was appropriate, with enzymes activities as follows: FPase = 410.76 U/gDM, CMCase = 351.96U/gDM, beta -glucosidase = 16.37 U/gDM, xylanase = 6166.01 U/gDM and amyloglucosidase = 425.04 U/gDM (with maximum 993.71 U/gDM on day 6). In addition, the solid state fermentation significantly (P < 0.01) reduced the concentrations of NDF, ADF, cellulose and hemicellulose in the rice straw by 19.96, 13.8, 16.32 and 32.87%, respectively. The high degradation of the hemicellulose was reflected by the high activity of xylanase enzyme, which hydrolyses xylan in hemicellulose to xylose. Higher reducing sugar and microbial cell mass productions were also obtained after 8 days fermentation. Present data showed that, A. terreus is capable of producing high quantity of cellulolytic enzymes for the reduction of lignocellulose contents of biomass in a shorter incubation time when compared with the previously reported for biological treatment of agricultural by-products using white rot fungi.
ISSN:1684-5315
1684-5315