Loading…

Beating Crystallization in Glass-Forming Metals by Millisecond Heating and Processing

The development of metal alloys that form glasses at modest cooling rates has stimulated broad scientific and technological interest. However, intervening crystallization of the liquid in even the most robust bulk metallic glass-formers is orders of magnitude faster than in many common polymers and...

Full description

Saved in:
Bibliographic Details
Published in:Science (American Association for the Advancement of Science) 2011-05, Vol.332 (6031), p.828-833
Main Authors: Johnson, William L., Kaltenboeck, Georg, Demetriou, Marios D., Schramm, Joseph P., Liu, Xiao, Samwer, Konrad, Kim, C. Paul, Hofmann, Douglas C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c473t-e5d0863c09cd55123e593683c806c6b00b467c54d108eb73a55ea175af2cff923
cites cdi_FETCH-LOGICAL-c473t-e5d0863c09cd55123e593683c806c6b00b467c54d108eb73a55ea175af2cff923
container_end_page 833
container_issue 6031
container_start_page 828
container_title Science (American Association for the Advancement of Science)
container_volume 332
creator Johnson, William L.
Kaltenboeck, Georg
Demetriou, Marios D.
Schramm, Joseph P.
Liu, Xiao
Samwer, Konrad
Kim, C. Paul
Hofmann, Douglas C.
description The development of metal alloys that form glasses at modest cooling rates has stimulated broad scientific and technological interest. However, intervening crystallization of the liquid in even the most robust bulk metallic glass-formers is orders of magnitude faster than in many common polymers and silicate glass-forming liquids. Crystallization limits experimental studies of the undercooled liquid and hampers efforts to plastically process metallic glasses. We have developed a method to rapidly and uniformly heat a metallic glass at rates of 10⁶ kelvin per second to temperatures spanning the undercooled liquid region. Liquid properties are subsequently measured on millisecond time scales at previously inaccessible temperatures under near-adiabatic conditions. Rapid thermoplastic forming of the undercooled liquid into complex net shapes is implemented under rheological conditions typically used in molding of plastics. By operating in the millisecond regime, we are able to "beat" the intervening crystallization and sucessfully process even marginal glass-forming alloys with very limited stability against crystallization that are not processable by conventional heating.
doi_str_mv 10.1126/science.1201362
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_907934444</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>29784271</jstor_id><sourcerecordid>29784271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-e5d0863c09cd55123e593683c806c6b00b467c54d108eb73a55ea175af2cff923</originalsourceid><addsrcrecordid>eNqF0c9LwzAUB_Agis4fZ09KEcRTt5ekSZOjDnWCogc9lzRNpaNrNK87zL_ejFUHXswlebxPHglfQk4pjCllcoK2cZ11Y8qAcsl2yIiCFqlmwHfJCIDLVEEuDsgh4hwg9jTfJweMCimp0iPyduNM33TvyTSssDdt23zF2ndJ0yX3rUFM73xYrMGTi21MylXy1ESGzvquSmbDdRPPL8FbhxjLY7JXR-xOhv2IvN3dvk5n6ePz_cP0-jG1Wc771IkKlOQWtK2EoIy7-DypuFUgrSwBykzmVmQVBeXKnBshnKG5MDWzda0ZPyJXm7kfwX8uHfbFokHr2tZ0zi-x0JBrnsX1r1RSCqZ0JqO8-CPnfhm6-I014hljdD1uskE2eMTg6uIjNAsTVgWFYp1MMSRTDMnEG-fD2GW5cNWv_4kigssBGLSmrYPpbINbl1Ed84TozjZujr0P277OVcZyyr8BcNOf9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>866342214</pqid></control><display><type>article</type><title>Beating Crystallization in Glass-Forming Metals by Millisecond Heating and Processing</title><source>Alma/SFX Local Collection</source><source>Science Online科学在线</source><creator>Johnson, William L. ; Kaltenboeck, Georg ; Demetriou, Marios D. ; Schramm, Joseph P. ; Liu, Xiao ; Samwer, Konrad ; Kim, C. Paul ; Hofmann, Douglas C.</creator><creatorcontrib>Johnson, William L. ; Kaltenboeck, Georg ; Demetriou, Marios D. ; Schramm, Joseph P. ; Liu, Xiao ; Samwer, Konrad ; Kim, C. Paul ; Hofmann, Douglas C.</creatorcontrib><description>The development of metal alloys that form glasses at modest cooling rates has stimulated broad scientific and technological interest. However, intervening crystallization of the liquid in even the most robust bulk metallic glass-formers is orders of magnitude faster than in many common polymers and silicate glass-forming liquids. Crystallization limits experimental studies of the undercooled liquid and hampers efforts to plastically process metallic glasses. We have developed a method to rapidly and uniformly heat a metallic glass at rates of 10⁶ kelvin per second to temperatures spanning the undercooled liquid region. Liquid properties are subsequently measured on millisecond time scales at previously inaccessible temperatures under near-adiabatic conditions. Rapid thermoplastic forming of the undercooled liquid into complex net shapes is implemented under rheological conditions typically used in molding of plastics. By operating in the millisecond regime, we are able to "beat" the intervening crystallization and sucessfully process even marginal glass-forming alloys with very limited stability against crystallization that are not processable by conventional heating.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1201362</identifier><identifier>PMID: 21566189</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Association for the Advancement of Science</publisher><subject>Alloys ; Amorphous materials ; Condensed matter: structure, mechanical and thermal properties ; Cooling ; Cross-disciplinary physics: materials science; rheology ; Crystallization ; Electrodes ; Enthalpy ; Equations of state, phase equilibria, and phase transitions ; Exact sciences and technology ; Glass transitions ; Glasses (including metallic glasses) ; Heat ; Heating ; Liquids ; Materials science ; Metallic glasses ; Metals ; Physics ; Polymers ; Resistance heating ; Rheology ; Silicates ; Specific materials ; Specific phase transitions ; Stability ; Temperature scales ; Thermoplastics ; Viscosity</subject><ispartof>Science (American Association for the Advancement of Science), 2011-05, Vol.332 (6031), p.828-833</ispartof><rights>Copyright © 2011 The American Association for the Advancement of Science</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-e5d0863c09cd55123e593683c806c6b00b467c54d108eb73a55ea175af2cff923</citedby><cites>FETCH-LOGICAL-c473t-e5d0863c09cd55123e593683c806c6b00b467c54d108eb73a55ea175af2cff923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2884,2885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24190030$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21566189$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Johnson, William L.</creatorcontrib><creatorcontrib>Kaltenboeck, Georg</creatorcontrib><creatorcontrib>Demetriou, Marios D.</creatorcontrib><creatorcontrib>Schramm, Joseph P.</creatorcontrib><creatorcontrib>Liu, Xiao</creatorcontrib><creatorcontrib>Samwer, Konrad</creatorcontrib><creatorcontrib>Kim, C. Paul</creatorcontrib><creatorcontrib>Hofmann, Douglas C.</creatorcontrib><title>Beating Crystallization in Glass-Forming Metals by Millisecond Heating and Processing</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>The development of metal alloys that form glasses at modest cooling rates has stimulated broad scientific and technological interest. However, intervening crystallization of the liquid in even the most robust bulk metallic glass-formers is orders of magnitude faster than in many common polymers and silicate glass-forming liquids. Crystallization limits experimental studies of the undercooled liquid and hampers efforts to plastically process metallic glasses. We have developed a method to rapidly and uniformly heat a metallic glass at rates of 10⁶ kelvin per second to temperatures spanning the undercooled liquid region. Liquid properties are subsequently measured on millisecond time scales at previously inaccessible temperatures under near-adiabatic conditions. Rapid thermoplastic forming of the undercooled liquid into complex net shapes is implemented under rheological conditions typically used in molding of plastics. By operating in the millisecond regime, we are able to "beat" the intervening crystallization and sucessfully process even marginal glass-forming alloys with very limited stability against crystallization that are not processable by conventional heating.</description><subject>Alloys</subject><subject>Amorphous materials</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cooling</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Crystallization</subject><subject>Electrodes</subject><subject>Enthalpy</subject><subject>Equations of state, phase equilibria, and phase transitions</subject><subject>Exact sciences and technology</subject><subject>Glass transitions</subject><subject>Glasses (including metallic glasses)</subject><subject>Heat</subject><subject>Heating</subject><subject>Liquids</subject><subject>Materials science</subject><subject>Metallic glasses</subject><subject>Metals</subject><subject>Physics</subject><subject>Polymers</subject><subject>Resistance heating</subject><subject>Rheology</subject><subject>Silicates</subject><subject>Specific materials</subject><subject>Specific phase transitions</subject><subject>Stability</subject><subject>Temperature scales</subject><subject>Thermoplastics</subject><subject>Viscosity</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqF0c9LwzAUB_Agis4fZ09KEcRTt5ekSZOjDnWCogc9lzRNpaNrNK87zL_ejFUHXswlebxPHglfQk4pjCllcoK2cZ11Y8qAcsl2yIiCFqlmwHfJCIDLVEEuDsgh4hwg9jTfJweMCimp0iPyduNM33TvyTSssDdt23zF2ndJ0yX3rUFM73xYrMGTi21MylXy1ESGzvquSmbDdRPPL8FbhxjLY7JXR-xOhv2IvN3dvk5n6ePz_cP0-jG1Wc771IkKlOQWtK2EoIy7-DypuFUgrSwBykzmVmQVBeXKnBshnKG5MDWzda0ZPyJXm7kfwX8uHfbFokHr2tZ0zi-x0JBrnsX1r1RSCqZ0JqO8-CPnfhm6-I014hljdD1uskE2eMTg6uIjNAsTVgWFYp1MMSRTDMnEG-fD2GW5cNWv_4kigssBGLSmrYPpbINbl1Ed84TozjZujr0P277OVcZyyr8BcNOf9w</recordid><startdate>20110513</startdate><enddate>20110513</enddate><creator>Johnson, William L.</creator><creator>Kaltenboeck, Georg</creator><creator>Demetriou, Marios D.</creator><creator>Schramm, Joseph P.</creator><creator>Liu, Xiao</creator><creator>Samwer, Konrad</creator><creator>Kim, C. Paul</creator><creator>Hofmann, Douglas C.</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20110513</creationdate><title>Beating Crystallization in Glass-Forming Metals by Millisecond Heating and Processing</title><author>Johnson, William L. ; Kaltenboeck, Georg ; Demetriou, Marios D. ; Schramm, Joseph P. ; Liu, Xiao ; Samwer, Konrad ; Kim, C. Paul ; Hofmann, Douglas C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-e5d0863c09cd55123e593683c806c6b00b467c54d108eb73a55ea175af2cff923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Alloys</topic><topic>Amorphous materials</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cooling</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Crystallization</topic><topic>Electrodes</topic><topic>Enthalpy</topic><topic>Equations of state, phase equilibria, and phase transitions</topic><topic>Exact sciences and technology</topic><topic>Glass transitions</topic><topic>Glasses (including metallic glasses)</topic><topic>Heat</topic><topic>Heating</topic><topic>Liquids</topic><topic>Materials science</topic><topic>Metallic glasses</topic><topic>Metals</topic><topic>Physics</topic><topic>Polymers</topic><topic>Resistance heating</topic><topic>Rheology</topic><topic>Silicates</topic><topic>Specific materials</topic><topic>Specific phase transitions</topic><topic>Stability</topic><topic>Temperature scales</topic><topic>Thermoplastics</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johnson, William L.</creatorcontrib><creatorcontrib>Kaltenboeck, Georg</creatorcontrib><creatorcontrib>Demetriou, Marios D.</creatorcontrib><creatorcontrib>Schramm, Joseph P.</creatorcontrib><creatorcontrib>Liu, Xiao</creatorcontrib><creatorcontrib>Samwer, Konrad</creatorcontrib><creatorcontrib>Kim, C. Paul</creatorcontrib><creatorcontrib>Hofmann, Douglas C.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johnson, William L.</au><au>Kaltenboeck, Georg</au><au>Demetriou, Marios D.</au><au>Schramm, Joseph P.</au><au>Liu, Xiao</au><au>Samwer, Konrad</au><au>Kim, C. Paul</au><au>Hofmann, Douglas C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Beating Crystallization in Glass-Forming Metals by Millisecond Heating and Processing</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2011-05-13</date><risdate>2011</risdate><volume>332</volume><issue>6031</issue><spage>828</spage><epage>833</epage><pages>828-833</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>The development of metal alloys that form glasses at modest cooling rates has stimulated broad scientific and technological interest. However, intervening crystallization of the liquid in even the most robust bulk metallic glass-formers is orders of magnitude faster than in many common polymers and silicate glass-forming liquids. Crystallization limits experimental studies of the undercooled liquid and hampers efforts to plastically process metallic glasses. We have developed a method to rapidly and uniformly heat a metallic glass at rates of 10⁶ kelvin per second to temperatures spanning the undercooled liquid region. Liquid properties are subsequently measured on millisecond time scales at previously inaccessible temperatures under near-adiabatic conditions. Rapid thermoplastic forming of the undercooled liquid into complex net shapes is implemented under rheological conditions typically used in molding of plastics. By operating in the millisecond regime, we are able to "beat" the intervening crystallization and sucessfully process even marginal glass-forming alloys with very limited stability against crystallization that are not processable by conventional heating.</abstract><cop>Washington, DC</cop><pub>American Association for the Advancement of Science</pub><pmid>21566189</pmid><doi>10.1126/science.1201362</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2011-05, Vol.332 (6031), p.828-833
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_907934444
source Alma/SFX Local Collection; Science Online科学在线
subjects Alloys
Amorphous materials
Condensed matter: structure, mechanical and thermal properties
Cooling
Cross-disciplinary physics: materials science
rheology
Crystallization
Electrodes
Enthalpy
Equations of state, phase equilibria, and phase transitions
Exact sciences and technology
Glass transitions
Glasses (including metallic glasses)
Heat
Heating
Liquids
Materials science
Metallic glasses
Metals
Physics
Polymers
Resistance heating
Rheology
Silicates
Specific materials
Specific phase transitions
Stability
Temperature scales
Thermoplastics
Viscosity
title Beating Crystallization in Glass-Forming Metals by Millisecond Heating and Processing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T09%3A06%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Beating%20Crystallization%20in%20Glass-Forming%20Metals%20by%20Millisecond%20Heating%20and%20Processing&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Johnson,%20William%20L.&rft.date=2011-05-13&rft.volume=332&rft.issue=6031&rft.spage=828&rft.epage=833&rft.pages=828-833&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1201362&rft_dat=%3Cjstor_proqu%3E29784271%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c473t-e5d0863c09cd55123e593683c806c6b00b467c54d108eb73a55ea175af2cff923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=866342214&rft_id=info:pmid/21566189&rft_jstor_id=29784271&rfr_iscdi=true