Loading…
Beating Crystallization in Glass-Forming Metals by Millisecond Heating and Processing
The development of metal alloys that form glasses at modest cooling rates has stimulated broad scientific and technological interest. However, intervening crystallization of the liquid in even the most robust bulk metallic glass-formers is orders of magnitude faster than in many common polymers and...
Saved in:
Published in: | Science (American Association for the Advancement of Science) 2011-05, Vol.332 (6031), p.828-833 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c473t-e5d0863c09cd55123e593683c806c6b00b467c54d108eb73a55ea175af2cff923 |
---|---|
cites | cdi_FETCH-LOGICAL-c473t-e5d0863c09cd55123e593683c806c6b00b467c54d108eb73a55ea175af2cff923 |
container_end_page | 833 |
container_issue | 6031 |
container_start_page | 828 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 332 |
creator | Johnson, William L. Kaltenboeck, Georg Demetriou, Marios D. Schramm, Joseph P. Liu, Xiao Samwer, Konrad Kim, C. Paul Hofmann, Douglas C. |
description | The development of metal alloys that form glasses at modest cooling rates has stimulated broad scientific and technological interest. However, intervening crystallization of the liquid in even the most robust bulk metallic glass-formers is orders of magnitude faster than in many common polymers and silicate glass-forming liquids. Crystallization limits experimental studies of the undercooled liquid and hampers efforts to plastically process metallic glasses. We have developed a method to rapidly and uniformly heat a metallic glass at rates of 10⁶ kelvin per second to temperatures spanning the undercooled liquid region. Liquid properties are subsequently measured on millisecond time scales at previously inaccessible temperatures under near-adiabatic conditions. Rapid thermoplastic forming of the undercooled liquid into complex net shapes is implemented under rheological conditions typically used in molding of plastics. By operating in the millisecond regime, we are able to "beat" the intervening crystallization and sucessfully process even marginal glass-forming alloys with very limited stability against crystallization that are not processable by conventional heating. |
doi_str_mv | 10.1126/science.1201362 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_907934444</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>29784271</jstor_id><sourcerecordid>29784271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-e5d0863c09cd55123e593683c806c6b00b467c54d108eb73a55ea175af2cff923</originalsourceid><addsrcrecordid>eNqF0c9LwzAUB_Agis4fZ09KEcRTt5ekSZOjDnWCogc9lzRNpaNrNK87zL_ejFUHXswlebxPHglfQk4pjCllcoK2cZ11Y8qAcsl2yIiCFqlmwHfJCIDLVEEuDsgh4hwg9jTfJweMCimp0iPyduNM33TvyTSssDdt23zF2ndJ0yX3rUFM73xYrMGTi21MylXy1ESGzvquSmbDdRPPL8FbhxjLY7JXR-xOhv2IvN3dvk5n6ePz_cP0-jG1Wc771IkKlOQWtK2EoIy7-DypuFUgrSwBykzmVmQVBeXKnBshnKG5MDWzda0ZPyJXm7kfwX8uHfbFokHr2tZ0zi-x0JBrnsX1r1RSCqZ0JqO8-CPnfhm6-I014hljdD1uskE2eMTg6uIjNAsTVgWFYp1MMSRTDMnEG-fD2GW5cNWv_4kigssBGLSmrYPpbINbl1Ed84TozjZujr0P277OVcZyyr8BcNOf9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>866342214</pqid></control><display><type>article</type><title>Beating Crystallization in Glass-Forming Metals by Millisecond Heating and Processing</title><source>Alma/SFX Local Collection</source><source>Science Online科学在线</source><creator>Johnson, William L. ; Kaltenboeck, Georg ; Demetriou, Marios D. ; Schramm, Joseph P. ; Liu, Xiao ; Samwer, Konrad ; Kim, C. Paul ; Hofmann, Douglas C.</creator><creatorcontrib>Johnson, William L. ; Kaltenboeck, Georg ; Demetriou, Marios D. ; Schramm, Joseph P. ; Liu, Xiao ; Samwer, Konrad ; Kim, C. Paul ; Hofmann, Douglas C.</creatorcontrib><description>The development of metal alloys that form glasses at modest cooling rates has stimulated broad scientific and technological interest. However, intervening crystallization of the liquid in even the most robust bulk metallic glass-formers is orders of magnitude faster than in many common polymers and silicate glass-forming liquids. Crystallization limits experimental studies of the undercooled liquid and hampers efforts to plastically process metallic glasses. We have developed a method to rapidly and uniformly heat a metallic glass at rates of 10⁶ kelvin per second to temperatures spanning the undercooled liquid region. Liquid properties are subsequently measured on millisecond time scales at previously inaccessible temperatures under near-adiabatic conditions. Rapid thermoplastic forming of the undercooled liquid into complex net shapes is implemented under rheological conditions typically used in molding of plastics. By operating in the millisecond regime, we are able to "beat" the intervening crystallization and sucessfully process even marginal glass-forming alloys with very limited stability against crystallization that are not processable by conventional heating.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1201362</identifier><identifier>PMID: 21566189</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Association for the Advancement of Science</publisher><subject>Alloys ; Amorphous materials ; Condensed matter: structure, mechanical and thermal properties ; Cooling ; Cross-disciplinary physics: materials science; rheology ; Crystallization ; Electrodes ; Enthalpy ; Equations of state, phase equilibria, and phase transitions ; Exact sciences and technology ; Glass transitions ; Glasses (including metallic glasses) ; Heat ; Heating ; Liquids ; Materials science ; Metallic glasses ; Metals ; Physics ; Polymers ; Resistance heating ; Rheology ; Silicates ; Specific materials ; Specific phase transitions ; Stability ; Temperature scales ; Thermoplastics ; Viscosity</subject><ispartof>Science (American Association for the Advancement of Science), 2011-05, Vol.332 (6031), p.828-833</ispartof><rights>Copyright © 2011 The American Association for the Advancement of Science</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-e5d0863c09cd55123e593683c806c6b00b467c54d108eb73a55ea175af2cff923</citedby><cites>FETCH-LOGICAL-c473t-e5d0863c09cd55123e593683c806c6b00b467c54d108eb73a55ea175af2cff923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2884,2885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24190030$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21566189$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Johnson, William L.</creatorcontrib><creatorcontrib>Kaltenboeck, Georg</creatorcontrib><creatorcontrib>Demetriou, Marios D.</creatorcontrib><creatorcontrib>Schramm, Joseph P.</creatorcontrib><creatorcontrib>Liu, Xiao</creatorcontrib><creatorcontrib>Samwer, Konrad</creatorcontrib><creatorcontrib>Kim, C. Paul</creatorcontrib><creatorcontrib>Hofmann, Douglas C.</creatorcontrib><title>Beating Crystallization in Glass-Forming Metals by Millisecond Heating and Processing</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>The development of metal alloys that form glasses at modest cooling rates has stimulated broad scientific and technological interest. However, intervening crystallization of the liquid in even the most robust bulk metallic glass-formers is orders of magnitude faster than in many common polymers and silicate glass-forming liquids. Crystallization limits experimental studies of the undercooled liquid and hampers efforts to plastically process metallic glasses. We have developed a method to rapidly and uniformly heat a metallic glass at rates of 10⁶ kelvin per second to temperatures spanning the undercooled liquid region. Liquid properties are subsequently measured on millisecond time scales at previously inaccessible temperatures under near-adiabatic conditions. Rapid thermoplastic forming of the undercooled liquid into complex net shapes is implemented under rheological conditions typically used in molding of plastics. By operating in the millisecond regime, we are able to "beat" the intervening crystallization and sucessfully process even marginal glass-forming alloys with very limited stability against crystallization that are not processable by conventional heating.</description><subject>Alloys</subject><subject>Amorphous materials</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cooling</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Crystallization</subject><subject>Electrodes</subject><subject>Enthalpy</subject><subject>Equations of state, phase equilibria, and phase transitions</subject><subject>Exact sciences and technology</subject><subject>Glass transitions</subject><subject>Glasses (including metallic glasses)</subject><subject>Heat</subject><subject>Heating</subject><subject>Liquids</subject><subject>Materials science</subject><subject>Metallic glasses</subject><subject>Metals</subject><subject>Physics</subject><subject>Polymers</subject><subject>Resistance heating</subject><subject>Rheology</subject><subject>Silicates</subject><subject>Specific materials</subject><subject>Specific phase transitions</subject><subject>Stability</subject><subject>Temperature scales</subject><subject>Thermoplastics</subject><subject>Viscosity</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqF0c9LwzAUB_Agis4fZ09KEcRTt5ekSZOjDnWCogc9lzRNpaNrNK87zL_ejFUHXswlebxPHglfQk4pjCllcoK2cZ11Y8qAcsl2yIiCFqlmwHfJCIDLVEEuDsgh4hwg9jTfJweMCimp0iPyduNM33TvyTSssDdt23zF2ndJ0yX3rUFM73xYrMGTi21MylXy1ESGzvquSmbDdRPPL8FbhxjLY7JXR-xOhv2IvN3dvk5n6ePz_cP0-jG1Wc771IkKlOQWtK2EoIy7-DypuFUgrSwBykzmVmQVBeXKnBshnKG5MDWzda0ZPyJXm7kfwX8uHfbFokHr2tZ0zi-x0JBrnsX1r1RSCqZ0JqO8-CPnfhm6-I014hljdD1uskE2eMTg6uIjNAsTVgWFYp1MMSRTDMnEG-fD2GW5cNWv_4kigssBGLSmrYPpbINbl1Ed84TozjZujr0P277OVcZyyr8BcNOf9w</recordid><startdate>20110513</startdate><enddate>20110513</enddate><creator>Johnson, William L.</creator><creator>Kaltenboeck, Georg</creator><creator>Demetriou, Marios D.</creator><creator>Schramm, Joseph P.</creator><creator>Liu, Xiao</creator><creator>Samwer, Konrad</creator><creator>Kim, C. Paul</creator><creator>Hofmann, Douglas C.</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20110513</creationdate><title>Beating Crystallization in Glass-Forming Metals by Millisecond Heating and Processing</title><author>Johnson, William L. ; Kaltenboeck, Georg ; Demetriou, Marios D. ; Schramm, Joseph P. ; Liu, Xiao ; Samwer, Konrad ; Kim, C. Paul ; Hofmann, Douglas C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-e5d0863c09cd55123e593683c806c6b00b467c54d108eb73a55ea175af2cff923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Alloys</topic><topic>Amorphous materials</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cooling</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Crystallization</topic><topic>Electrodes</topic><topic>Enthalpy</topic><topic>Equations of state, phase equilibria, and phase transitions</topic><topic>Exact sciences and technology</topic><topic>Glass transitions</topic><topic>Glasses (including metallic glasses)</topic><topic>Heat</topic><topic>Heating</topic><topic>Liquids</topic><topic>Materials science</topic><topic>Metallic glasses</topic><topic>Metals</topic><topic>Physics</topic><topic>Polymers</topic><topic>Resistance heating</topic><topic>Rheology</topic><topic>Silicates</topic><topic>Specific materials</topic><topic>Specific phase transitions</topic><topic>Stability</topic><topic>Temperature scales</topic><topic>Thermoplastics</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johnson, William L.</creatorcontrib><creatorcontrib>Kaltenboeck, Georg</creatorcontrib><creatorcontrib>Demetriou, Marios D.</creatorcontrib><creatorcontrib>Schramm, Joseph P.</creatorcontrib><creatorcontrib>Liu, Xiao</creatorcontrib><creatorcontrib>Samwer, Konrad</creatorcontrib><creatorcontrib>Kim, C. Paul</creatorcontrib><creatorcontrib>Hofmann, Douglas C.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johnson, William L.</au><au>Kaltenboeck, Georg</au><au>Demetriou, Marios D.</au><au>Schramm, Joseph P.</au><au>Liu, Xiao</au><au>Samwer, Konrad</au><au>Kim, C. Paul</au><au>Hofmann, Douglas C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Beating Crystallization in Glass-Forming Metals by Millisecond Heating and Processing</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2011-05-13</date><risdate>2011</risdate><volume>332</volume><issue>6031</issue><spage>828</spage><epage>833</epage><pages>828-833</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>The development of metal alloys that form glasses at modest cooling rates has stimulated broad scientific and technological interest. However, intervening crystallization of the liquid in even the most robust bulk metallic glass-formers is orders of magnitude faster than in many common polymers and silicate glass-forming liquids. Crystallization limits experimental studies of the undercooled liquid and hampers efforts to plastically process metallic glasses. We have developed a method to rapidly and uniformly heat a metallic glass at rates of 10⁶ kelvin per second to temperatures spanning the undercooled liquid region. Liquid properties are subsequently measured on millisecond time scales at previously inaccessible temperatures under near-adiabatic conditions. Rapid thermoplastic forming of the undercooled liquid into complex net shapes is implemented under rheological conditions typically used in molding of plastics. By operating in the millisecond regime, we are able to "beat" the intervening crystallization and sucessfully process even marginal glass-forming alloys with very limited stability against crystallization that are not processable by conventional heating.</abstract><cop>Washington, DC</cop><pub>American Association for the Advancement of Science</pub><pmid>21566189</pmid><doi>10.1126/science.1201362</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2011-05, Vol.332 (6031), p.828-833 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_907934444 |
source | Alma/SFX Local Collection; Science Online科学在线 |
subjects | Alloys Amorphous materials Condensed matter: structure, mechanical and thermal properties Cooling Cross-disciplinary physics: materials science rheology Crystallization Electrodes Enthalpy Equations of state, phase equilibria, and phase transitions Exact sciences and technology Glass transitions Glasses (including metallic glasses) Heat Heating Liquids Materials science Metallic glasses Metals Physics Polymers Resistance heating Rheology Silicates Specific materials Specific phase transitions Stability Temperature scales Thermoplastics Viscosity |
title | Beating Crystallization in Glass-Forming Metals by Millisecond Heating and Processing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T09%3A06%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Beating%20Crystallization%20in%20Glass-Forming%20Metals%20by%20Millisecond%20Heating%20and%20Processing&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Johnson,%20William%20L.&rft.date=2011-05-13&rft.volume=332&rft.issue=6031&rft.spage=828&rft.epage=833&rft.pages=828-833&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1201362&rft_dat=%3Cjstor_proqu%3E29784271%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c473t-e5d0863c09cd55123e593683c806c6b00b467c54d108eb73a55ea175af2cff923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=866342214&rft_id=info:pmid/21566189&rft_jstor_id=29784271&rfr_iscdi=true |