Loading…
Three-dimensional crack growth with hp-generalized finite element and face offsetting methods
A coupling between the hp -version of the generalized finite element method ( hp -GFEM) and the face offsetting method (FOM) for crack growth simulations is presented. In the proposed GFEM, adaptive surface meshes composed of triangles are utilized to explicitly represent complex three-dimensional (...
Saved in:
Published in: | Computational mechanics 2010-08, Vol.46 (3), p.431-453 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c421t-e2eb233a6a0143d6b85f26abb112c41d9878c3d5a1a17a30275b0e429e86b3a13 |
---|---|
cites | cdi_FETCH-LOGICAL-c421t-e2eb233a6a0143d6b85f26abb112c41d9878c3d5a1a17a30275b0e429e86b3a13 |
container_end_page | 453 |
container_issue | 3 |
container_start_page | 431 |
container_title | Computational mechanics |
container_volume | 46 |
creator | Pereira, J. P. Duarte, C. A. Jiao, X. |
description | A coupling between the
hp
-version of the generalized finite element method (
hp
-GFEM) and the face offsetting method (FOM) for crack growth simulations is presented. In the proposed GFEM, adaptive surface meshes composed of triangles are utilized to explicitly represent complex three-dimensional (3-D) crack surfaces. By applying the
hp
-GFEM at each crack growth step, high-order approximations on locally refined meshes are automatically created in complex 3-D domains while preserving the aspect ratio of elements, regardless of crack geometry. The FOM is applied to track the evolution of the crack front in the explicit crack surface representation. The FOM provides geometrically feasible crack front descriptions based on
hp
-GFEM solutions. The coupling of
hp
-GFEM and FOM allows the simulation of arbitrary crack growth with concave crack fronts independent of the volume mesh. Numerical simulations illustrate the robustness and accuracy of the proposed methodology. |
doi_str_mv | 10.1007/s00466-010-0491-3 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_907934537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A355307999</galeid><sourcerecordid>A355307999</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-e2eb233a6a0143d6b85f26abb112c41d9878c3d5a1a17a30275b0e429e86b3a13</originalsourceid><addsrcrecordid>eNp1kc1q3TAQRkVpoTdpH6A7QxclC6UjybLsZQj5g0ChTZdFyPLYV6kt3Ui6pOnTV8GBkEARSDCcM4zmI-QTg2MGoL4mgLppKDCgUHeMijdkw2rBKXS8fks2wFRLVaPke3KQ0i0Ak62QG_LrZhsR6eAW9MkFb-bKRmN_V1MM93lb3btybXd0Qo_RzO4vDtXovMtY4YxFypXxpWQsVmEcE-bs_FQtmLdhSB_Iu9HMCT8-vYfk5_nZzeklvf52cXV6ck1tzVmmyLHnQpjGQJl5aPpWjrwxfc8YtzUbula1VgzSMMOUEcCV7AFr3mHb9MIwcUi-rH13MdztMWW9uGRxno3HsE-6A9WJWgpVyM-vyNuwj-XbSXPeMAGy7LFQxys1mRm182PIZSnlDLg4GzyOrtRPhJSidO66Ihy9EAqT8U-ezD4lffXj-0uWrayNIaWIo95Ft5j4oBnoxzD1GqYuYerHMLUoDl-dVFg_YXwe-__SP_WVoE4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2261305046</pqid></control><display><type>article</type><title>Three-dimensional crack growth with hp-generalized finite element and face offsetting methods</title><source>Springer Nature</source><creator>Pereira, J. P. ; Duarte, C. A. ; Jiao, X.</creator><creatorcontrib>Pereira, J. P. ; Duarte, C. A. ; Jiao, X.</creatorcontrib><description>A coupling between the
hp
-version of the generalized finite element method (
hp
-GFEM) and the face offsetting method (FOM) for crack growth simulations is presented. In the proposed GFEM, adaptive surface meshes composed of triangles are utilized to explicitly represent complex three-dimensional (3-D) crack surfaces. By applying the
hp
-GFEM at each crack growth step, high-order approximations on locally refined meshes are automatically created in complex 3-D domains while preserving the aspect ratio of elements, regardless of crack geometry. The FOM is applied to track the evolution of the crack front in the explicit crack surface representation. The FOM provides geometrically feasible crack front descriptions based on
hp
-GFEM solutions. The coupling of
hp
-GFEM and FOM allows the simulation of arbitrary crack growth with concave crack fronts independent of the volume mesh. Numerical simulations illustrate the robustness and accuracy of the proposed methodology.</description><identifier>ISSN: 0178-7675</identifier><identifier>EISSN: 1432-0924</identifier><identifier>DOI: 10.1007/s00466-010-0491-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Analysis ; Aspect ratio ; Classical and Continuum Physics ; Computational Science and Engineering ; Computer graphics ; Computer simulation ; Coupling ; Crack geometry ; Crack propagation ; Cracks ; Domains ; Engineering ; Finite element method ; Joining ; Mathematical analysis ; Mathematical models ; Methods ; Original Paper ; Representations ; Robustness (mathematics) ; Theoretical and Applied Mechanics ; Triangles</subject><ispartof>Computational mechanics, 2010-08, Vol.46 (3), p.431-453</ispartof><rights>Springer-Verlag 2010</rights><rights>COPYRIGHT 2010 Springer</rights><rights>Computational Mechanics is a copyright of Springer, (2010). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-e2eb233a6a0143d6b85f26abb112c41d9878c3d5a1a17a30275b0e429e86b3a13</citedby><cites>FETCH-LOGICAL-c421t-e2eb233a6a0143d6b85f26abb112c41d9878c3d5a1a17a30275b0e429e86b3a13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Pereira, J. P.</creatorcontrib><creatorcontrib>Duarte, C. A.</creatorcontrib><creatorcontrib>Jiao, X.</creatorcontrib><title>Three-dimensional crack growth with hp-generalized finite element and face offsetting methods</title><title>Computational mechanics</title><addtitle>Comput Mech</addtitle><description>A coupling between the
hp
-version of the generalized finite element method (
hp
-GFEM) and the face offsetting method (FOM) for crack growth simulations is presented. In the proposed GFEM, adaptive surface meshes composed of triangles are utilized to explicitly represent complex three-dimensional (3-D) crack surfaces. By applying the
hp
-GFEM at each crack growth step, high-order approximations on locally refined meshes are automatically created in complex 3-D domains while preserving the aspect ratio of elements, regardless of crack geometry. The FOM is applied to track the evolution of the crack front in the explicit crack surface representation. The FOM provides geometrically feasible crack front descriptions based on
hp
-GFEM solutions. The coupling of
hp
-GFEM and FOM allows the simulation of arbitrary crack growth with concave crack fronts independent of the volume mesh. Numerical simulations illustrate the robustness and accuracy of the proposed methodology.</description><subject>Analysis</subject><subject>Aspect ratio</subject><subject>Classical and Continuum Physics</subject><subject>Computational Science and Engineering</subject><subject>Computer graphics</subject><subject>Computer simulation</subject><subject>Coupling</subject><subject>Crack geometry</subject><subject>Crack propagation</subject><subject>Cracks</subject><subject>Domains</subject><subject>Engineering</subject><subject>Finite element method</subject><subject>Joining</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Original Paper</subject><subject>Representations</subject><subject>Robustness (mathematics)</subject><subject>Theoretical and Applied Mechanics</subject><subject>Triangles</subject><issn>0178-7675</issn><issn>1432-0924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kc1q3TAQRkVpoTdpH6A7QxclC6UjybLsZQj5g0ChTZdFyPLYV6kt3Ui6pOnTV8GBkEARSDCcM4zmI-QTg2MGoL4mgLppKDCgUHeMijdkw2rBKXS8fks2wFRLVaPke3KQ0i0Ak62QG_LrZhsR6eAW9MkFb-bKRmN_V1MM93lb3btybXd0Qo_RzO4vDtXovMtY4YxFypXxpWQsVmEcE-bs_FQtmLdhSB_Iu9HMCT8-vYfk5_nZzeklvf52cXV6ck1tzVmmyLHnQpjGQJl5aPpWjrwxfc8YtzUbula1VgzSMMOUEcCV7AFr3mHb9MIwcUi-rH13MdztMWW9uGRxno3HsE-6A9WJWgpVyM-vyNuwj-XbSXPeMAGy7LFQxys1mRm182PIZSnlDLg4GzyOrtRPhJSidO66Ihy9EAqT8U-ezD4lffXj-0uWrayNIaWIo95Ft5j4oBnoxzD1GqYuYerHMLUoDl-dVFg_YXwe-__SP_WVoE4</recordid><startdate>20100801</startdate><enddate>20100801</enddate><creator>Pereira, J. P.</creator><creator>Duarte, C. A.</creator><creator>Jiao, X.</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20100801</creationdate><title>Three-dimensional crack growth with hp-generalized finite element and face offsetting methods</title><author>Pereira, J. P. ; Duarte, C. A. ; Jiao, X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-e2eb233a6a0143d6b85f26abb112c41d9878c3d5a1a17a30275b0e429e86b3a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Analysis</topic><topic>Aspect ratio</topic><topic>Classical and Continuum Physics</topic><topic>Computational Science and Engineering</topic><topic>Computer graphics</topic><topic>Computer simulation</topic><topic>Coupling</topic><topic>Crack geometry</topic><topic>Crack propagation</topic><topic>Cracks</topic><topic>Domains</topic><topic>Engineering</topic><topic>Finite element method</topic><topic>Joining</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Original Paper</topic><topic>Representations</topic><topic>Robustness (mathematics)</topic><topic>Theoretical and Applied Mechanics</topic><topic>Triangles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pereira, J. P.</creatorcontrib><creatorcontrib>Duarte, C. A.</creatorcontrib><creatorcontrib>Jiao, X.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Computational mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pereira, J. P.</au><au>Duarte, C. A.</au><au>Jiao, X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-dimensional crack growth with hp-generalized finite element and face offsetting methods</atitle><jtitle>Computational mechanics</jtitle><stitle>Comput Mech</stitle><date>2010-08-01</date><risdate>2010</risdate><volume>46</volume><issue>3</issue><spage>431</spage><epage>453</epage><pages>431-453</pages><issn>0178-7675</issn><eissn>1432-0924</eissn><abstract>A coupling between the
hp
-version of the generalized finite element method (
hp
-GFEM) and the face offsetting method (FOM) for crack growth simulations is presented. In the proposed GFEM, adaptive surface meshes composed of triangles are utilized to explicitly represent complex three-dimensional (3-D) crack surfaces. By applying the
hp
-GFEM at each crack growth step, high-order approximations on locally refined meshes are automatically created in complex 3-D domains while preserving the aspect ratio of elements, regardless of crack geometry. The FOM is applied to track the evolution of the crack front in the explicit crack surface representation. The FOM provides geometrically feasible crack front descriptions based on
hp
-GFEM solutions. The coupling of
hp
-GFEM and FOM allows the simulation of arbitrary crack growth with concave crack fronts independent of the volume mesh. Numerical simulations illustrate the robustness and accuracy of the proposed methodology.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00466-010-0491-3</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-7675 |
ispartof | Computational mechanics, 2010-08, Vol.46 (3), p.431-453 |
issn | 0178-7675 1432-0924 |
language | eng |
recordid | cdi_proquest_miscellaneous_907934537 |
source | Springer Nature |
subjects | Analysis Aspect ratio Classical and Continuum Physics Computational Science and Engineering Computer graphics Computer simulation Coupling Crack geometry Crack propagation Cracks Domains Engineering Finite element method Joining Mathematical analysis Mathematical models Methods Original Paper Representations Robustness (mathematics) Theoretical and Applied Mechanics Triangles |
title | Three-dimensional crack growth with hp-generalized finite element and face offsetting methods |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A09%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-dimensional%20crack%20growth%20with%20hp-generalized%20finite%20element%20and%20face%20offsetting%20methods&rft.jtitle=Computational%20mechanics&rft.au=Pereira,%20J.%20P.&rft.date=2010-08-01&rft.volume=46&rft.issue=3&rft.spage=431&rft.epage=453&rft.pages=431-453&rft.issn=0178-7675&rft.eissn=1432-0924&rft_id=info:doi/10.1007/s00466-010-0491-3&rft_dat=%3Cgale_proqu%3EA355307999%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c421t-e2eb233a6a0143d6b85f26abb112c41d9878c3d5a1a17a30275b0e429e86b3a13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2261305046&rft_id=info:pmid/&rft_galeid=A355307999&rfr_iscdi=true |