Loading…

Three-dimensional crack growth with hp-generalized finite element and face offsetting methods

A coupling between the hp -version of the generalized finite element method ( hp -GFEM) and the face offsetting method (FOM) for crack growth simulations is presented. In the proposed GFEM, adaptive surface meshes composed of triangles are utilized to explicitly represent complex three-dimensional (...

Full description

Saved in:
Bibliographic Details
Published in:Computational mechanics 2010-08, Vol.46 (3), p.431-453
Main Authors: Pereira, J. P., Duarte, C. A., Jiao, X.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c421t-e2eb233a6a0143d6b85f26abb112c41d9878c3d5a1a17a30275b0e429e86b3a13
cites cdi_FETCH-LOGICAL-c421t-e2eb233a6a0143d6b85f26abb112c41d9878c3d5a1a17a30275b0e429e86b3a13
container_end_page 453
container_issue 3
container_start_page 431
container_title Computational mechanics
container_volume 46
creator Pereira, J. P.
Duarte, C. A.
Jiao, X.
description A coupling between the hp -version of the generalized finite element method ( hp -GFEM) and the face offsetting method (FOM) for crack growth simulations is presented. In the proposed GFEM, adaptive surface meshes composed of triangles are utilized to explicitly represent complex three-dimensional (3-D) crack surfaces. By applying the hp -GFEM at each crack growth step, high-order approximations on locally refined meshes are automatically created in complex 3-D domains while preserving the aspect ratio of elements, regardless of crack geometry. The FOM is applied to track the evolution of the crack front in the explicit crack surface representation. The FOM provides geometrically feasible crack front descriptions based on hp -GFEM solutions. The coupling of hp -GFEM and FOM allows the simulation of arbitrary crack growth with concave crack fronts independent of the volume mesh. Numerical simulations illustrate the robustness and accuracy of the proposed methodology.
doi_str_mv 10.1007/s00466-010-0491-3
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_907934537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A355307999</galeid><sourcerecordid>A355307999</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-e2eb233a6a0143d6b85f26abb112c41d9878c3d5a1a17a30275b0e429e86b3a13</originalsourceid><addsrcrecordid>eNp1kc1q3TAQRkVpoTdpH6A7QxclC6UjybLsZQj5g0ChTZdFyPLYV6kt3Ui6pOnTV8GBkEARSDCcM4zmI-QTg2MGoL4mgLppKDCgUHeMijdkw2rBKXS8fks2wFRLVaPke3KQ0i0Ak62QG_LrZhsR6eAW9MkFb-bKRmN_V1MM93lb3btybXd0Qo_RzO4vDtXovMtY4YxFypXxpWQsVmEcE-bs_FQtmLdhSB_Iu9HMCT8-vYfk5_nZzeklvf52cXV6ck1tzVmmyLHnQpjGQJl5aPpWjrwxfc8YtzUbula1VgzSMMOUEcCV7AFr3mHb9MIwcUi-rH13MdztMWW9uGRxno3HsE-6A9WJWgpVyM-vyNuwj-XbSXPeMAGy7LFQxys1mRm182PIZSnlDLg4GzyOrtRPhJSidO66Ihy9EAqT8U-ezD4lffXj-0uWrayNIaWIo95Ft5j4oBnoxzD1GqYuYerHMLUoDl-dVFg_YXwe-__SP_WVoE4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2261305046</pqid></control><display><type>article</type><title>Three-dimensional crack growth with hp-generalized finite element and face offsetting methods</title><source>Springer Nature</source><creator>Pereira, J. P. ; Duarte, C. A. ; Jiao, X.</creator><creatorcontrib>Pereira, J. P. ; Duarte, C. A. ; Jiao, X.</creatorcontrib><description>A coupling between the hp -version of the generalized finite element method ( hp -GFEM) and the face offsetting method (FOM) for crack growth simulations is presented. In the proposed GFEM, adaptive surface meshes composed of triangles are utilized to explicitly represent complex three-dimensional (3-D) crack surfaces. By applying the hp -GFEM at each crack growth step, high-order approximations on locally refined meshes are automatically created in complex 3-D domains while preserving the aspect ratio of elements, regardless of crack geometry. The FOM is applied to track the evolution of the crack front in the explicit crack surface representation. The FOM provides geometrically feasible crack front descriptions based on hp -GFEM solutions. The coupling of hp -GFEM and FOM allows the simulation of arbitrary crack growth with concave crack fronts independent of the volume mesh. Numerical simulations illustrate the robustness and accuracy of the proposed methodology.</description><identifier>ISSN: 0178-7675</identifier><identifier>EISSN: 1432-0924</identifier><identifier>DOI: 10.1007/s00466-010-0491-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Analysis ; Aspect ratio ; Classical and Continuum Physics ; Computational Science and Engineering ; Computer graphics ; Computer simulation ; Coupling ; Crack geometry ; Crack propagation ; Cracks ; Domains ; Engineering ; Finite element method ; Joining ; Mathematical analysis ; Mathematical models ; Methods ; Original Paper ; Representations ; Robustness (mathematics) ; Theoretical and Applied Mechanics ; Triangles</subject><ispartof>Computational mechanics, 2010-08, Vol.46 (3), p.431-453</ispartof><rights>Springer-Verlag 2010</rights><rights>COPYRIGHT 2010 Springer</rights><rights>Computational Mechanics is a copyright of Springer, (2010). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-e2eb233a6a0143d6b85f26abb112c41d9878c3d5a1a17a30275b0e429e86b3a13</citedby><cites>FETCH-LOGICAL-c421t-e2eb233a6a0143d6b85f26abb112c41d9878c3d5a1a17a30275b0e429e86b3a13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Pereira, J. P.</creatorcontrib><creatorcontrib>Duarte, C. A.</creatorcontrib><creatorcontrib>Jiao, X.</creatorcontrib><title>Three-dimensional crack growth with hp-generalized finite element and face offsetting methods</title><title>Computational mechanics</title><addtitle>Comput Mech</addtitle><description>A coupling between the hp -version of the generalized finite element method ( hp -GFEM) and the face offsetting method (FOM) for crack growth simulations is presented. In the proposed GFEM, adaptive surface meshes composed of triangles are utilized to explicitly represent complex three-dimensional (3-D) crack surfaces. By applying the hp -GFEM at each crack growth step, high-order approximations on locally refined meshes are automatically created in complex 3-D domains while preserving the aspect ratio of elements, regardless of crack geometry. The FOM is applied to track the evolution of the crack front in the explicit crack surface representation. The FOM provides geometrically feasible crack front descriptions based on hp -GFEM solutions. The coupling of hp -GFEM and FOM allows the simulation of arbitrary crack growth with concave crack fronts independent of the volume mesh. Numerical simulations illustrate the robustness and accuracy of the proposed methodology.</description><subject>Analysis</subject><subject>Aspect ratio</subject><subject>Classical and Continuum Physics</subject><subject>Computational Science and Engineering</subject><subject>Computer graphics</subject><subject>Computer simulation</subject><subject>Coupling</subject><subject>Crack geometry</subject><subject>Crack propagation</subject><subject>Cracks</subject><subject>Domains</subject><subject>Engineering</subject><subject>Finite element method</subject><subject>Joining</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Original Paper</subject><subject>Representations</subject><subject>Robustness (mathematics)</subject><subject>Theoretical and Applied Mechanics</subject><subject>Triangles</subject><issn>0178-7675</issn><issn>1432-0924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kc1q3TAQRkVpoTdpH6A7QxclC6UjybLsZQj5g0ChTZdFyPLYV6kt3Ui6pOnTV8GBkEARSDCcM4zmI-QTg2MGoL4mgLppKDCgUHeMijdkw2rBKXS8fks2wFRLVaPke3KQ0i0Ak62QG_LrZhsR6eAW9MkFb-bKRmN_V1MM93lb3btybXd0Qo_RzO4vDtXovMtY4YxFypXxpWQsVmEcE-bs_FQtmLdhSB_Iu9HMCT8-vYfk5_nZzeklvf52cXV6ck1tzVmmyLHnQpjGQJl5aPpWjrwxfc8YtzUbula1VgzSMMOUEcCV7AFr3mHb9MIwcUi-rH13MdztMWW9uGRxno3HsE-6A9WJWgpVyM-vyNuwj-XbSXPeMAGy7LFQxys1mRm182PIZSnlDLg4GzyOrtRPhJSidO66Ihy9EAqT8U-ezD4lffXj-0uWrayNIaWIo95Ft5j4oBnoxzD1GqYuYerHMLUoDl-dVFg_YXwe-__SP_WVoE4</recordid><startdate>20100801</startdate><enddate>20100801</enddate><creator>Pereira, J. P.</creator><creator>Duarte, C. A.</creator><creator>Jiao, X.</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20100801</creationdate><title>Three-dimensional crack growth with hp-generalized finite element and face offsetting methods</title><author>Pereira, J. P. ; Duarte, C. A. ; Jiao, X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-e2eb233a6a0143d6b85f26abb112c41d9878c3d5a1a17a30275b0e429e86b3a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Analysis</topic><topic>Aspect ratio</topic><topic>Classical and Continuum Physics</topic><topic>Computational Science and Engineering</topic><topic>Computer graphics</topic><topic>Computer simulation</topic><topic>Coupling</topic><topic>Crack geometry</topic><topic>Crack propagation</topic><topic>Cracks</topic><topic>Domains</topic><topic>Engineering</topic><topic>Finite element method</topic><topic>Joining</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Original Paper</topic><topic>Representations</topic><topic>Robustness (mathematics)</topic><topic>Theoretical and Applied Mechanics</topic><topic>Triangles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pereira, J. P.</creatorcontrib><creatorcontrib>Duarte, C. A.</creatorcontrib><creatorcontrib>Jiao, X.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Computational mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pereira, J. P.</au><au>Duarte, C. A.</au><au>Jiao, X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-dimensional crack growth with hp-generalized finite element and face offsetting methods</atitle><jtitle>Computational mechanics</jtitle><stitle>Comput Mech</stitle><date>2010-08-01</date><risdate>2010</risdate><volume>46</volume><issue>3</issue><spage>431</spage><epage>453</epage><pages>431-453</pages><issn>0178-7675</issn><eissn>1432-0924</eissn><abstract>A coupling between the hp -version of the generalized finite element method ( hp -GFEM) and the face offsetting method (FOM) for crack growth simulations is presented. In the proposed GFEM, adaptive surface meshes composed of triangles are utilized to explicitly represent complex three-dimensional (3-D) crack surfaces. By applying the hp -GFEM at each crack growth step, high-order approximations on locally refined meshes are automatically created in complex 3-D domains while preserving the aspect ratio of elements, regardless of crack geometry. The FOM is applied to track the evolution of the crack front in the explicit crack surface representation. The FOM provides geometrically feasible crack front descriptions based on hp -GFEM solutions. The coupling of hp -GFEM and FOM allows the simulation of arbitrary crack growth with concave crack fronts independent of the volume mesh. Numerical simulations illustrate the robustness and accuracy of the proposed methodology.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00466-010-0491-3</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0178-7675
ispartof Computational mechanics, 2010-08, Vol.46 (3), p.431-453
issn 0178-7675
1432-0924
language eng
recordid cdi_proquest_miscellaneous_907934537
source Springer Nature
subjects Analysis
Aspect ratio
Classical and Continuum Physics
Computational Science and Engineering
Computer graphics
Computer simulation
Coupling
Crack geometry
Crack propagation
Cracks
Domains
Engineering
Finite element method
Joining
Mathematical analysis
Mathematical models
Methods
Original Paper
Representations
Robustness (mathematics)
Theoretical and Applied Mechanics
Triangles
title Three-dimensional crack growth with hp-generalized finite element and face offsetting methods
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A09%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-dimensional%20crack%20growth%20with%20hp-generalized%20finite%20element%20and%20face%20offsetting%20methods&rft.jtitle=Computational%20mechanics&rft.au=Pereira,%20J.%20P.&rft.date=2010-08-01&rft.volume=46&rft.issue=3&rft.spage=431&rft.epage=453&rft.pages=431-453&rft.issn=0178-7675&rft.eissn=1432-0924&rft_id=info:doi/10.1007/s00466-010-0491-3&rft_dat=%3Cgale_proqu%3EA355307999%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c421t-e2eb233a6a0143d6b85f26abb112c41d9878c3d5a1a17a30275b0e429e86b3a13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2261305046&rft_id=info:pmid/&rft_galeid=A355307999&rfr_iscdi=true