Loading…
A neural network algorithm for the prediction of events in multidimensional time series and its application to the analysis of data in cosmic physics
Many practical problems are related to the search for interconnections between the behavior of complex objects and relatively rare events caused by this behavior or correlated with it. In such cases, it can be assumed that the occurrence of each event is preceded by some phenomenon, i.e., a combinat...
Saved in:
Published in: | Pattern recognition and image analysis 2006-01, Vol.16 (1), p.79-81 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c219t-75dad6c28022c88f69aea58ccf2d09ae7b9fac0e6c69fd1af38f008f9bc87d913 |
---|---|
cites | cdi_FETCH-LOGICAL-c219t-75dad6c28022c88f69aea58ccf2d09ae7b9fac0e6c69fd1af38f008f9bc87d913 |
container_end_page | 81 |
container_issue | 1 |
container_start_page | 79 |
container_title | Pattern recognition and image analysis |
container_volume | 16 |
creator | Shugai, Ju. S. Dolenko, S. A. Persiantsev, I. G. Orlov, Yu. V. |
description | Many practical problems are related to the search for interconnections between the behavior of complex objects and relatively rare events caused by this behavior or correlated with it. In such cases, it can be assumed that the occurrence of each event is preceded by some phenomenon, i.e., a combination of values of the features describing the object under consideration in a known range of time delays. This work continues the investigation of the neural-network based method for analyzing such objects developed by authors elsewhere. The method aims at revealing morphological and dynamical features that cause the event or precede its occurrence.[PUBLICATION ABSTRACT] |
doi_str_mv | 10.1134/S1054661806010251 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_907934629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>907934629</sourcerecordid><originalsourceid>FETCH-LOGICAL-c219t-75dad6c28022c88f69aea58ccf2d09ae7b9fac0e6c69fd1af38f008f9bc87d913</originalsourceid><addsrcrecordid>eNplkctOwzAQRS0EEqXwAewsNqwCttM49rKqeElILIB15PpBXZI4eBxQP4T_xW1ZwWqudM8caTQInVNyRWk5u36mpJpxTgXhhBJW0QM0oVVVFZxRdphzrottf4xOANaEEEElm6DvOe7tGFWbR_oK8R2r9i1En1YddiHitLJ4iNZ4nXzocXDYfto-AfY97sY2eeM720PusiLljMFGbwGr3mCfOTUMrddqt53CzqcyuwEPW5tRSW1dOkDnNR5WudBwio6casGe_c4per29eVncF49Pdw-L-WOhGZWpqCujDNdMEMa0EI5LZVUltHbMkJzrpXRKE8s1l85Q5Urh8uFOLrWojaTlFF3uvUMMH6OF1HQetG1b1dswQiNJLcsZZzKTF3_IdRhjPgSamhNelaVgGaJ7SMcAEK1rhug7FTcNJc32Tc2_N5U_sBeIlA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>760653382</pqid></control><display><type>article</type><title>A neural network algorithm for the prediction of events in multidimensional time series and its application to the analysis of data in cosmic physics</title><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>Shugai, Ju. S. ; Dolenko, S. A. ; Persiantsev, I. G. ; Orlov, Yu. V.</creator><creatorcontrib>Shugai, Ju. S. ; Dolenko, S. A. ; Persiantsev, I. G. ; Orlov, Yu. V.</creatorcontrib><description>Many practical problems are related to the search for interconnections between the behavior of complex objects and relatively rare events caused by this behavior or correlated with it. In such cases, it can be assumed that the occurrence of each event is preceded by some phenomenon, i.e., a combination of values of the features describing the object under consideration in a known range of time delays. This work continues the investigation of the neural-network based method for analyzing such objects developed by authors elsewhere. The method aims at revealing morphological and dynamical features that cause the event or precede its occurrence.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 1054-6618</identifier><identifier>EISSN: 1555-6212</identifier><identifier>DOI: 10.1134/S1054661806010251</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Algorithms ; Correlation ; Image analysis ; Interconnections ; Neural networks ; Pattern recognition ; Studies ; Time delay ; Time series</subject><ispartof>Pattern recognition and image analysis, 2006-01, Vol.16 (1), p.79-81</ispartof><rights>Nauka/Interperiodica 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c219t-75dad6c28022c88f69aea58ccf2d09ae7b9fac0e6c69fd1af38f008f9bc87d913</citedby><cites>FETCH-LOGICAL-c219t-75dad6c28022c88f69aea58ccf2d09ae7b9fac0e6c69fd1af38f008f9bc87d913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/760653382?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,11669,27905,27906,36041,36042,44344</link.rule.ids></links><search><creatorcontrib>Shugai, Ju. S.</creatorcontrib><creatorcontrib>Dolenko, S. A.</creatorcontrib><creatorcontrib>Persiantsev, I. G.</creatorcontrib><creatorcontrib>Orlov, Yu. V.</creatorcontrib><title>A neural network algorithm for the prediction of events in multidimensional time series and its application to the analysis of data in cosmic physics</title><title>Pattern recognition and image analysis</title><description>Many practical problems are related to the search for interconnections between the behavior of complex objects and relatively rare events caused by this behavior or correlated with it. In such cases, it can be assumed that the occurrence of each event is preceded by some phenomenon, i.e., a combination of values of the features describing the object under consideration in a known range of time delays. This work continues the investigation of the neural-network based method for analyzing such objects developed by authors elsewhere. The method aims at revealing morphological and dynamical features that cause the event or precede its occurrence.[PUBLICATION ABSTRACT]</description><subject>Algorithms</subject><subject>Correlation</subject><subject>Image analysis</subject><subject>Interconnections</subject><subject>Neural networks</subject><subject>Pattern recognition</subject><subject>Studies</subject><subject>Time delay</subject><subject>Time series</subject><issn>1054-6618</issn><issn>1555-6212</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNplkctOwzAQRS0EEqXwAewsNqwCttM49rKqeElILIB15PpBXZI4eBxQP4T_xW1ZwWqudM8caTQInVNyRWk5u36mpJpxTgXhhBJW0QM0oVVVFZxRdphzrottf4xOANaEEEElm6DvOe7tGFWbR_oK8R2r9i1En1YddiHitLJ4iNZ4nXzocXDYfto-AfY97sY2eeM720PusiLljMFGbwGr3mCfOTUMrddqt53CzqcyuwEPW5tRSW1dOkDnNR5WudBwio6casGe_c4per29eVncF49Pdw-L-WOhGZWpqCujDNdMEMa0EI5LZVUltHbMkJzrpXRKE8s1l85Q5Urh8uFOLrWojaTlFF3uvUMMH6OF1HQetG1b1dswQiNJLcsZZzKTF3_IdRhjPgSamhNelaVgGaJ7SMcAEK1rhug7FTcNJc32Tc2_N5U_sBeIlA</recordid><startdate>20060101</startdate><enddate>20060101</enddate><creator>Shugai, Ju. S.</creator><creator>Dolenko, S. A.</creator><creator>Persiantsev, I. G.</creator><creator>Orlov, Yu. V.</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20060101</creationdate><title>A neural network algorithm for the prediction of events in multidimensional time series and its application to the analysis of data in cosmic physics</title><author>Shugai, Ju. S. ; Dolenko, S. A. ; Persiantsev, I. G. ; Orlov, Yu. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c219t-75dad6c28022c88f69aea58ccf2d09ae7b9fac0e6c69fd1af38f008f9bc87d913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Correlation</topic><topic>Image analysis</topic><topic>Interconnections</topic><topic>Neural networks</topic><topic>Pattern recognition</topic><topic>Studies</topic><topic>Time delay</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shugai, Ju. S.</creatorcontrib><creatorcontrib>Dolenko, S. A.</creatorcontrib><creatorcontrib>Persiantsev, I. G.</creatorcontrib><creatorcontrib>Orlov, Yu. V.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI-INFORM Complete</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Pattern recognition and image analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shugai, Ju. S.</au><au>Dolenko, S. A.</au><au>Persiantsev, I. G.</au><au>Orlov, Yu. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A neural network algorithm for the prediction of events in multidimensional time series and its application to the analysis of data in cosmic physics</atitle><jtitle>Pattern recognition and image analysis</jtitle><date>2006-01-01</date><risdate>2006</risdate><volume>16</volume><issue>1</issue><spage>79</spage><epage>81</epage><pages>79-81</pages><issn>1054-6618</issn><eissn>1555-6212</eissn><abstract>Many practical problems are related to the search for interconnections between the behavior of complex objects and relatively rare events caused by this behavior or correlated with it. In such cases, it can be assumed that the occurrence of each event is preceded by some phenomenon, i.e., a combination of values of the features describing the object under consideration in a known range of time delays. This work continues the investigation of the neural-network based method for analyzing such objects developed by authors elsewhere. The method aims at revealing morphological and dynamical features that cause the event or precede its occurrence.[PUBLICATION ABSTRACT]</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1134/S1054661806010251</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1054-6618 |
ispartof | Pattern recognition and image analysis, 2006-01, Vol.16 (1), p.79-81 |
issn | 1054-6618 1555-6212 |
language | eng |
recordid | cdi_proquest_miscellaneous_907934629 |
source | ABI/INFORM Global; Springer Nature |
subjects | Algorithms Correlation Image analysis Interconnections Neural networks Pattern recognition Studies Time delay Time series |
title | A neural network algorithm for the prediction of events in multidimensional time series and its application to the analysis of data in cosmic physics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T07%3A39%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20neural%20network%20algorithm%20for%20the%20prediction%20of%20events%20in%20multidimensional%20time%20series%20and%20its%20application%20to%20the%20analysis%20of%20data%20in%20cosmic%20physics&rft.jtitle=Pattern%20recognition%20and%20image%20analysis&rft.au=Shugai,%20Ju.%20S.&rft.date=2006-01-01&rft.volume=16&rft.issue=1&rft.spage=79&rft.epage=81&rft.pages=79-81&rft.issn=1054-6618&rft.eissn=1555-6212&rft_id=info:doi/10.1134/S1054661806010251&rft_dat=%3Cproquest_cross%3E907934629%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c219t-75dad6c28022c88f69aea58ccf2d09ae7b9fac0e6c69fd1af38f008f9bc87d913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=760653382&rft_id=info:pmid/&rfr_iscdi=true |