Loading…

Unguardedness mostly means many solutions

A widely accepted method to specify (possibly infinite) behaviour is to define it as the solution, in some process algebra, of a recursive specification, i.e., a system of recursive equations over the fundamental operations of the process algebra. The method only works if the recursive specification...

Full description

Saved in:
Bibliographic Details
Published in:Theoretical computer science 2011-06, Vol.412 (28), p.3090-3100
Main Authors: Baeten, Jos C.M., Luttik, Bas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c402t-4bc663a30710175d6f4538eba97553690bf661646e710800ac27de32106761d63
cites cdi_FETCH-LOGICAL-c402t-4bc663a30710175d6f4538eba97553690bf661646e710800ac27de32106761d63
container_end_page 3100
container_issue 28
container_start_page 3090
container_title Theoretical computer science
container_volume 412
creator Baeten, Jos C.M.
Luttik, Bas
description A widely accepted method to specify (possibly infinite) behaviour is to define it as the solution, in some process algebra, of a recursive specification, i.e., a system of recursive equations over the fundamental operations of the process algebra. The method only works if the recursive specification has a unique solution in the process algebra; it is well-known that guardedness is a sufficient requirement on a recursive specification to guarantee a unique solution in any of the standard process algebras. In this paper we investigate to what extent guardedness is also a necessary requirement to ensure unique solutions. We prove a theorem to the effect that all unguarded recursive specifications over BPA have infinitely many solutions in the standard models for BPA . In contrast, we observe that there exist recursive specifications over PA , necessarily involving parallel composition, that have a unique solution, or finitely many solutions in the standard models for PA .
doi_str_mv 10.1016/j.tcs.2011.02.046
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_907939076</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304397511001940</els_id><sourcerecordid>907939076</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-4bc663a30710175d6f4538eba97553690bf661646e710800ac27de32106761d63</originalsourceid><addsrcrecordid>eNp9kE1LA0EMhgdRsFZ_gLdeRDzsmvnYzC6eRPyCghd7HqazszJlP-pkV-i_d0qLR3NICDzJm7yMXXPIOXC83-Sjo1wA5zmIHBSesBkvdZUJUalTNgMJKpOVLs7ZBdEGUhQaZ-xu1X9NNta-7j3RohtobHeLzts-NbbfLWhopzEMPV2ys8a25K-Odc5WL8-fT2_Z8uP1_elxmTkFYszU2iFKK0Gnu3RRY6MKWfq1TdqFxArWDSJHhT4BJYB1QtdeCg6okdco5-z2sHcbh-_J02i6QM63re39MJGpQFcypT3JD6SLA1H0jdnG0Nm4MxzM3hWzMckVs3fFgDDJlTRzc9xuydm2ibZ3gf4GhRKIJYjEPRw4n179CT4acsH3ztchejeaegj_qPwCGFh1GQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>907939076</pqid></control><display><type>article</type><title>Unguardedness mostly means many solutions</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Baeten, Jos C.M. ; Luttik, Bas</creator><creatorcontrib>Baeten, Jos C.M. ; Luttik, Bas</creatorcontrib><description>A widely accepted method to specify (possibly infinite) behaviour is to define it as the solution, in some process algebra, of a recursive specification, i.e., a system of recursive equations over the fundamental operations of the process algebra. The method only works if the recursive specification has a unique solution in the process algebra; it is well-known that guardedness is a sufficient requirement on a recursive specification to guarantee a unique solution in any of the standard process algebras. In this paper we investigate to what extent guardedness is also a necessary requirement to ensure unique solutions. We prove a theorem to the effect that all unguarded recursive specifications over BPA have infinitely many solutions in the standard models for BPA . In contrast, we observe that there exist recursive specifications over PA , necessarily involving parallel composition, that have a unique solution, or finitely many solutions in the standard models for PA .</description><identifier>ISSN: 0304-3975</identifier><identifier>EISSN: 1879-2294</identifier><identifier>DOI: 10.1016/j.tcs.2011.02.046</identifier><identifier>CODEN: TCSCDI</identifier><language>eng</language><publisher>Oxford: Elsevier B.V</publisher><subject>Algebra ; Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Computer science; control theory; systems ; Computer simulation ; Exact sciences and technology ; Mathematical analysis ; Mathematical models ; Mathematics ; Miscellaneous ; Nonlinear algebraic and transcendental equations ; Numerical analysis ; Numerical analysis. Scientific computation ; Process algebra ; Recursive ; Recursive specification ; Sciences and techniques of general use ; Software ; Software engineering ; Specifications ; Theorems ; Theoretical computing ; Unguarded equation</subject><ispartof>Theoretical computer science, 2011-06, Vol.412 (28), p.3090-3100</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-4bc663a30710175d6f4538eba97553690bf661646e710800ac27de32106761d63</citedby><cites>FETCH-LOGICAL-c402t-4bc663a30710175d6f4538eba97553690bf661646e710800ac27de32106761d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24266802$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Baeten, Jos C.M.</creatorcontrib><creatorcontrib>Luttik, Bas</creatorcontrib><title>Unguardedness mostly means many solutions</title><title>Theoretical computer science</title><description>A widely accepted method to specify (possibly infinite) behaviour is to define it as the solution, in some process algebra, of a recursive specification, i.e., a system of recursive equations over the fundamental operations of the process algebra. The method only works if the recursive specification has a unique solution in the process algebra; it is well-known that guardedness is a sufficient requirement on a recursive specification to guarantee a unique solution in any of the standard process algebras. In this paper we investigate to what extent guardedness is also a necessary requirement to ensure unique solutions. We prove a theorem to the effect that all unguarded recursive specifications over BPA have infinitely many solutions in the standard models for BPA . In contrast, we observe that there exist recursive specifications over PA , necessarily involving parallel composition, that have a unique solution, or finitely many solutions in the standard models for PA .</description><subject>Algebra</subject><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Computer simulation</subject><subject>Exact sciences and technology</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Miscellaneous</subject><subject>Nonlinear algebraic and transcendental equations</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Process algebra</subject><subject>Recursive</subject><subject>Recursive specification</subject><subject>Sciences and techniques of general use</subject><subject>Software</subject><subject>Software engineering</subject><subject>Specifications</subject><subject>Theorems</subject><subject>Theoretical computing</subject><subject>Unguarded equation</subject><issn>0304-3975</issn><issn>1879-2294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LA0EMhgdRsFZ_gLdeRDzsmvnYzC6eRPyCghd7HqazszJlP-pkV-i_d0qLR3NICDzJm7yMXXPIOXC83-Sjo1wA5zmIHBSesBkvdZUJUalTNgMJKpOVLs7ZBdEGUhQaZ-xu1X9NNta-7j3RohtobHeLzts-NbbfLWhopzEMPV2ys8a25K-Odc5WL8-fT2_Z8uP1_elxmTkFYszU2iFKK0Gnu3RRY6MKWfq1TdqFxArWDSJHhT4BJYB1QtdeCg6okdco5-z2sHcbh-_J02i6QM63re39MJGpQFcypT3JD6SLA1H0jdnG0Nm4MxzM3hWzMckVs3fFgDDJlTRzc9xuydm2ibZ3gf4GhRKIJYjEPRw4n179CT4acsH3ztchejeaegj_qPwCGFh1GQ</recordid><startdate>20110620</startdate><enddate>20110620</enddate><creator>Baeten, Jos C.M.</creator><creator>Luttik, Bas</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110620</creationdate><title>Unguardedness mostly means many solutions</title><author>Baeten, Jos C.M. ; Luttik, Bas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-4bc663a30710175d6f4538eba97553690bf661646e710800ac27de32106761d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algebra</topic><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Computer simulation</topic><topic>Exact sciences and technology</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Miscellaneous</topic><topic>Nonlinear algebraic and transcendental equations</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Process algebra</topic><topic>Recursive</topic><topic>Recursive specification</topic><topic>Sciences and techniques of general use</topic><topic>Software</topic><topic>Software engineering</topic><topic>Specifications</topic><topic>Theorems</topic><topic>Theoretical computing</topic><topic>Unguarded equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baeten, Jos C.M.</creatorcontrib><creatorcontrib>Luttik, Bas</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Theoretical computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baeten, Jos C.M.</au><au>Luttik, Bas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unguardedness mostly means many solutions</atitle><jtitle>Theoretical computer science</jtitle><date>2011-06-20</date><risdate>2011</risdate><volume>412</volume><issue>28</issue><spage>3090</spage><epage>3100</epage><pages>3090-3100</pages><issn>0304-3975</issn><eissn>1879-2294</eissn><coden>TCSCDI</coden><abstract>A widely accepted method to specify (possibly infinite) behaviour is to define it as the solution, in some process algebra, of a recursive specification, i.e., a system of recursive equations over the fundamental operations of the process algebra. The method only works if the recursive specification has a unique solution in the process algebra; it is well-known that guardedness is a sufficient requirement on a recursive specification to guarantee a unique solution in any of the standard process algebras. In this paper we investigate to what extent guardedness is also a necessary requirement to ensure unique solutions. We prove a theorem to the effect that all unguarded recursive specifications over BPA have infinitely many solutions in the standard models for BPA . In contrast, we observe that there exist recursive specifications over PA , necessarily involving parallel composition, that have a unique solution, or finitely many solutions in the standard models for PA .</abstract><cop>Oxford</cop><pub>Elsevier B.V</pub><doi>10.1016/j.tcs.2011.02.046</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-3975
ispartof Theoretical computer science, 2011-06, Vol.412 (28), p.3090-3100
issn 0304-3975
1879-2294
language eng
recordid cdi_proquest_miscellaneous_907939076
source ScienceDirect Freedom Collection 2022-2024
subjects Algebra
Algorithmics. Computability. Computer arithmetics
Applied sciences
Computer science
control theory
systems
Computer simulation
Exact sciences and technology
Mathematical analysis
Mathematical models
Mathematics
Miscellaneous
Nonlinear algebraic and transcendental equations
Numerical analysis
Numerical analysis. Scientific computation
Process algebra
Recursive
Recursive specification
Sciences and techniques of general use
Software
Software engineering
Specifications
Theorems
Theoretical computing
Unguarded equation
title Unguardedness mostly means many solutions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A10%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unguardedness%20mostly%20means%20many%20solutions&rft.jtitle=Theoretical%20computer%20science&rft.au=Baeten,%20Jos%20C.M.&rft.date=2011-06-20&rft.volume=412&rft.issue=28&rft.spage=3090&rft.epage=3100&rft.pages=3090-3100&rft.issn=0304-3975&rft.eissn=1879-2294&rft.coden=TCSCDI&rft_id=info:doi/10.1016/j.tcs.2011.02.046&rft_dat=%3Cproquest_cross%3E907939076%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-4bc663a30710175d6f4538eba97553690bf661646e710800ac27de32106761d63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=907939076&rft_id=info:pmid/&rfr_iscdi=true