Loading…
Quantum conductance of armchair carbon nanocoils: roles of geometry effects
Armchair carbon nanocoils (CNCs) with different geometric parameters are constructed and optimized using a tight-binding (TB) total energy model. The quantum conductance of these nanocoils is simulated employing a γ-orbital TB model incorpo- rated with the non-equilibrium Green's function theory. Co...
Saved in:
Published in: | Science China. Physics, mechanics & astronomy mechanics & astronomy, 2011-05, Vol.54 (5), p.841-845 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-225b070e8ad9e956f34bf58c760ebfe761cec13522d3178818c0c8a40705cd473 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-225b070e8ad9e956f34bf58c760ebfe761cec13522d3178818c0c8a40705cd473 |
container_end_page | 845 |
container_issue | 5 |
container_start_page | 841 |
container_title | Science China. Physics, mechanics & astronomy |
container_volume | 54 |
creator | Liu, LiZhao Gao, HaiLi Zhao, JiJun Lu, JianPing |
description | Armchair carbon nanocoils (CNCs) with different geometric parameters are constructed and optimized using a tight-binding (TB) total energy model. The quantum conductance of these nanocoils is simulated employing a γ-orbital TB model incorpo- rated with the non-equilibrium Green's function theory. Compared with the perfect armchair carbon nanotubes (CNTs) and armchair CNTs with only Stone-Wales (SW) defects, the quantum conductance spectra of the armchair CNCs present distinct gaps around the Fermi level, which are mainly originated from the existence of sp3 carbon in the three-dimensional spiral structures. Moreover, the detailed conductance spectra of the armchair CNCs depend sensitively on their geometric parameters, such as tubular diameter and block-block distance. |
doi_str_mv | 10.1007/s11433-011-4315-z |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_907940692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>37413817</cqvip_id><sourcerecordid>2918579008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-225b070e8ad9e956f34bf58c760ebfe761cec13522d3178818c0c8a40705cd473</originalsourceid><addsrcrecordid>eNp9kU9O3TAQh6OKSkXAAbqLygI2oZ7Y8Z8lQtAigapK7dpy5o0foYkNdrJ4HKVn4U69Qv30kJBYMJuZxffNyP5V1WdgZ8CY-poBBOcNA2gEh655-lDtg5amAdOqvTJLJRrFhf5UHeV8z0pxw4QS-9Xtz8WFeZlqjGG14OwCUh197dKEd25INbrUx1AHFyLGYcz_nv_WKY6Ut9Sa4kRz2tTkPeGcD6uP3o2Zjl76QfX76vLXxffm5se364vzmwYF03PTtl3PFCPtVoZMJz0Xve80Ksmo96QkICHwrm1XHJTWoJGhdqI4Ha6E4gfVyW7vQ4qPC-XZTkNGGkcXKC7ZGqaMYNK0hTx9lyxfA6KTUuqCHr9B7-OSQnmHbQ3oThnGthTsKEwx50TePqRhcmljgdltGnaXhi1p2G0a9qk47c7JhQ1rSq-b35O-vBy6i2H9WDzbO_zjh5EsVwK4BsX_A9FhmGc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918579008</pqid></control><display><type>article</type><title>Quantum conductance of armchair carbon nanocoils: roles of geometry effects</title><source>Springer Nature</source><creator>Liu, LiZhao ; Gao, HaiLi ; Zhao, JiJun ; Lu, JianPing</creator><creatorcontrib>Liu, LiZhao ; Gao, HaiLi ; Zhao, JiJun ; Lu, JianPing</creatorcontrib><description>Armchair carbon nanocoils (CNCs) with different geometric parameters are constructed and optimized using a tight-binding (TB) total energy model. The quantum conductance of these nanocoils is simulated employing a γ-orbital TB model incorpo- rated with the non-equilibrium Green's function theory. Compared with the perfect armchair carbon nanotubes (CNTs) and armchair CNTs with only Stone-Wales (SW) defects, the quantum conductance spectra of the armchair CNCs present distinct gaps around the Fermi level, which are mainly originated from the existence of sp3 carbon in the three-dimensional spiral structures. Moreover, the detailed conductance spectra of the armchair CNCs depend sensitively on their geometric parameters, such as tubular diameter and block-block distance.</description><identifier>ISSN: 1674-7348</identifier><identifier>EISSN: 1869-1927</identifier><identifier>DOI: 10.1007/s11433-011-4315-z</identifier><language>eng</language><publisher>Heidelberg: SP Science China Press</publisher><subject>Astronomy ; Carbon ; Carbon nanotubes ; Classical and Continuum Physics ; Computer numerical control ; Conductance ; Diameters ; Green's functions ; Mathematical models ; Nanocomposites ; Nanomaterials ; Nanostructure ; Nanotechnology ; Observations and Techniques ; Parameter sensitivity ; Physics ; Physics and Astronomy ; Research Paper ; Spectra ; 几何参数 ; 几何效应 ; 格林函数理论 ; 碳纳米管 ; 能量模型</subject><ispartof>Science China. Physics, mechanics & astronomy, 2011-05, Vol.54 (5), p.841-845</ispartof><rights>Science China Press and Springer-Verlag Berlin Heidelberg 2011</rights><rights>Science China Press and Springer-Verlag Berlin Heidelberg 2011.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-225b070e8ad9e956f34bf58c760ebfe761cec13522d3178818c0c8a40705cd473</citedby><cites>FETCH-LOGICAL-c408t-225b070e8ad9e956f34bf58c760ebfe761cec13522d3178818c0c8a40705cd473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/60109X/60109X.jpg</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Liu, LiZhao</creatorcontrib><creatorcontrib>Gao, HaiLi</creatorcontrib><creatorcontrib>Zhao, JiJun</creatorcontrib><creatorcontrib>Lu, JianPing</creatorcontrib><title>Quantum conductance of armchair carbon nanocoils: roles of geometry effects</title><title>Science China. Physics, mechanics & astronomy</title><addtitle>Sci. China Phys. Mech. Astron</addtitle><addtitle>SCIENCE CHINA Physics, Mechanics & Astronomy</addtitle><description>Armchair carbon nanocoils (CNCs) with different geometric parameters are constructed and optimized using a tight-binding (TB) total energy model. The quantum conductance of these nanocoils is simulated employing a γ-orbital TB model incorpo- rated with the non-equilibrium Green's function theory. Compared with the perfect armchair carbon nanotubes (CNTs) and armchair CNTs with only Stone-Wales (SW) defects, the quantum conductance spectra of the armchair CNCs present distinct gaps around the Fermi level, which are mainly originated from the existence of sp3 carbon in the three-dimensional spiral structures. Moreover, the detailed conductance spectra of the armchair CNCs depend sensitively on their geometric parameters, such as tubular diameter and block-block distance.</description><subject>Astronomy</subject><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>Classical and Continuum Physics</subject><subject>Computer numerical control</subject><subject>Conductance</subject><subject>Diameters</subject><subject>Green's functions</subject><subject>Mathematical models</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Observations and Techniques</subject><subject>Parameter sensitivity</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Research Paper</subject><subject>Spectra</subject><subject>几何参数</subject><subject>几何效应</subject><subject>格林函数理论</subject><subject>碳纳米管</subject><subject>能量模型</subject><issn>1674-7348</issn><issn>1869-1927</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kU9O3TAQh6OKSkXAAbqLygI2oZ7Y8Z8lQtAigapK7dpy5o0foYkNdrJ4HKVn4U69Qv30kJBYMJuZxffNyP5V1WdgZ8CY-poBBOcNA2gEh655-lDtg5amAdOqvTJLJRrFhf5UHeV8z0pxw4QS-9Xtz8WFeZlqjGG14OwCUh197dKEd25INbrUx1AHFyLGYcz_nv_WKY6Ut9Sa4kRz2tTkPeGcD6uP3o2Zjl76QfX76vLXxffm5se364vzmwYF03PTtl3PFCPtVoZMJz0Xve80Ksmo96QkICHwrm1XHJTWoJGhdqI4Ha6E4gfVyW7vQ4qPC-XZTkNGGkcXKC7ZGqaMYNK0hTx9lyxfA6KTUuqCHr9B7-OSQnmHbQ3oThnGthTsKEwx50TePqRhcmljgdltGnaXhi1p2G0a9qk47c7JhQ1rSq-b35O-vBy6i2H9WDzbO_zjh5EsVwK4BsX_A9FhmGc</recordid><startdate>20110501</startdate><enddate>20110501</enddate><creator>Liu, LiZhao</creator><creator>Gao, HaiLi</creator><creator>Zhao, JiJun</creator><creator>Lu, JianPing</creator><general>SP Science China Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20110501</creationdate><title>Quantum conductance of armchair carbon nanocoils: roles of geometry effects</title><author>Liu, LiZhao ; Gao, HaiLi ; Zhao, JiJun ; Lu, JianPing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-225b070e8ad9e956f34bf58c760ebfe761cec13522d3178818c0c8a40705cd473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Astronomy</topic><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>Classical and Continuum Physics</topic><topic>Computer numerical control</topic><topic>Conductance</topic><topic>Diameters</topic><topic>Green's functions</topic><topic>Mathematical models</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Observations and Techniques</topic><topic>Parameter sensitivity</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Research Paper</topic><topic>Spectra</topic><topic>几何参数</topic><topic>几何效应</topic><topic>格林函数理论</topic><topic>碳纳米管</topic><topic>能量模型</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, LiZhao</creatorcontrib><creatorcontrib>Gao, HaiLi</creatorcontrib><creatorcontrib>Zhao, JiJun</creatorcontrib><creatorcontrib>Lu, JianPing</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Science China. Physics, mechanics & astronomy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, LiZhao</au><au>Gao, HaiLi</au><au>Zhao, JiJun</au><au>Lu, JianPing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum conductance of armchair carbon nanocoils: roles of geometry effects</atitle><jtitle>Science China. Physics, mechanics & astronomy</jtitle><stitle>Sci. China Phys. Mech. Astron</stitle><addtitle>SCIENCE CHINA Physics, Mechanics & Astronomy</addtitle><date>2011-05-01</date><risdate>2011</risdate><volume>54</volume><issue>5</issue><spage>841</spage><epage>845</epage><pages>841-845</pages><issn>1674-7348</issn><eissn>1869-1927</eissn><abstract>Armchair carbon nanocoils (CNCs) with different geometric parameters are constructed and optimized using a tight-binding (TB) total energy model. The quantum conductance of these nanocoils is simulated employing a γ-orbital TB model incorpo- rated with the non-equilibrium Green's function theory. Compared with the perfect armchair carbon nanotubes (CNTs) and armchair CNTs with only Stone-Wales (SW) defects, the quantum conductance spectra of the armchair CNCs present distinct gaps around the Fermi level, which are mainly originated from the existence of sp3 carbon in the three-dimensional spiral structures. Moreover, the detailed conductance spectra of the armchair CNCs depend sensitively on their geometric parameters, such as tubular diameter and block-block distance.</abstract><cop>Heidelberg</cop><pub>SP Science China Press</pub><doi>10.1007/s11433-011-4315-z</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-7348 |
ispartof | Science China. Physics, mechanics & astronomy, 2011-05, Vol.54 (5), p.841-845 |
issn | 1674-7348 1869-1927 |
language | eng |
recordid | cdi_proquest_miscellaneous_907940692 |
source | Springer Nature |
subjects | Astronomy Carbon Carbon nanotubes Classical and Continuum Physics Computer numerical control Conductance Diameters Green's functions Mathematical models Nanocomposites Nanomaterials Nanostructure Nanotechnology Observations and Techniques Parameter sensitivity Physics Physics and Astronomy Research Paper Spectra 几何参数 几何效应 格林函数理论 碳纳米管 能量模型 |
title | Quantum conductance of armchair carbon nanocoils: roles of geometry effects |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T09%3A54%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20conductance%20of%20armchair%20carbon%20nanocoils%EF%BC%9A%20roles%20of%20geometry%20effects&rft.jtitle=Science%20China.%20Physics,%20mechanics%20&%20astronomy&rft.au=Liu,%20LiZhao&rft.date=2011-05-01&rft.volume=54&rft.issue=5&rft.spage=841&rft.epage=845&rft.pages=841-845&rft.issn=1674-7348&rft.eissn=1869-1927&rft_id=info:doi/10.1007/s11433-011-4315-z&rft_dat=%3Cproquest_cross%3E2918579008%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-225b070e8ad9e956f34bf58c760ebfe761cec13522d3178818c0c8a40705cd473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918579008&rft_id=info:pmid/&rft_cqvip_id=37413817&rfr_iscdi=true |