Loading…

Quantum conductance of armchair carbon nanocoils: roles of geometry effects

Armchair carbon nanocoils (CNCs) with different geometric parameters are constructed and optimized using a tight-binding (TB) total energy model. The quantum conductance of these nanocoils is simulated employing a γ-orbital TB model incorpo- rated with the non-equilibrium Green's function theory. Co...

Full description

Saved in:
Bibliographic Details
Published in:Science China. Physics, mechanics & astronomy mechanics & astronomy, 2011-05, Vol.54 (5), p.841-845
Main Authors: Liu, LiZhao, Gao, HaiLi, Zhao, JiJun, Lu, JianPing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-225b070e8ad9e956f34bf58c760ebfe761cec13522d3178818c0c8a40705cd473
cites cdi_FETCH-LOGICAL-c408t-225b070e8ad9e956f34bf58c760ebfe761cec13522d3178818c0c8a40705cd473
container_end_page 845
container_issue 5
container_start_page 841
container_title Science China. Physics, mechanics & astronomy
container_volume 54
creator Liu, LiZhao
Gao, HaiLi
Zhao, JiJun
Lu, JianPing
description Armchair carbon nanocoils (CNCs) with different geometric parameters are constructed and optimized using a tight-binding (TB) total energy model. The quantum conductance of these nanocoils is simulated employing a γ-orbital TB model incorpo- rated with the non-equilibrium Green's function theory. Compared with the perfect armchair carbon nanotubes (CNTs) and armchair CNTs with only Stone-Wales (SW) defects, the quantum conductance spectra of the armchair CNCs present distinct gaps around the Fermi level, which are mainly originated from the existence of sp3 carbon in the three-dimensional spiral structures. Moreover, the detailed conductance spectra of the armchair CNCs depend sensitively on their geometric parameters, such as tubular diameter and block-block distance.
doi_str_mv 10.1007/s11433-011-4315-z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_907940692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>37413817</cqvip_id><sourcerecordid>2918579008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-225b070e8ad9e956f34bf58c760ebfe761cec13522d3178818c0c8a40705cd473</originalsourceid><addsrcrecordid>eNp9kU9O3TAQh6OKSkXAAbqLygI2oZ7Y8Z8lQtAigapK7dpy5o0foYkNdrJ4HKVn4U69Qv30kJBYMJuZxffNyP5V1WdgZ8CY-poBBOcNA2gEh655-lDtg5amAdOqvTJLJRrFhf5UHeV8z0pxw4QS-9Xtz8WFeZlqjGG14OwCUh197dKEd25INbrUx1AHFyLGYcz_nv_WKY6Ut9Sa4kRz2tTkPeGcD6uP3o2Zjl76QfX76vLXxffm5se364vzmwYF03PTtl3PFCPtVoZMJz0Xve80Ksmo96QkICHwrm1XHJTWoJGhdqI4Ha6E4gfVyW7vQ4qPC-XZTkNGGkcXKC7ZGqaMYNK0hTx9lyxfA6KTUuqCHr9B7-OSQnmHbQ3oThnGthTsKEwx50TePqRhcmljgdltGnaXhi1p2G0a9qk47c7JhQ1rSq-b35O-vBy6i2H9WDzbO_zjh5EsVwK4BsX_A9FhmGc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918579008</pqid></control><display><type>article</type><title>Quantum conductance of armchair carbon nanocoils: roles of geometry effects</title><source>Springer Nature</source><creator>Liu, LiZhao ; Gao, HaiLi ; Zhao, JiJun ; Lu, JianPing</creator><creatorcontrib>Liu, LiZhao ; Gao, HaiLi ; Zhao, JiJun ; Lu, JianPing</creatorcontrib><description>Armchair carbon nanocoils (CNCs) with different geometric parameters are constructed and optimized using a tight-binding (TB) total energy model. The quantum conductance of these nanocoils is simulated employing a γ-orbital TB model incorpo- rated with the non-equilibrium Green's function theory. Compared with the perfect armchair carbon nanotubes (CNTs) and armchair CNTs with only Stone-Wales (SW) defects, the quantum conductance spectra of the armchair CNCs present distinct gaps around the Fermi level, which are mainly originated from the existence of sp3 carbon in the three-dimensional spiral structures. Moreover, the detailed conductance spectra of the armchair CNCs depend sensitively on their geometric parameters, such as tubular diameter and block-block distance.</description><identifier>ISSN: 1674-7348</identifier><identifier>EISSN: 1869-1927</identifier><identifier>DOI: 10.1007/s11433-011-4315-z</identifier><language>eng</language><publisher>Heidelberg: SP Science China Press</publisher><subject>Astronomy ; Carbon ; Carbon nanotubes ; Classical and Continuum Physics ; Computer numerical control ; Conductance ; Diameters ; Green's functions ; Mathematical models ; Nanocomposites ; Nanomaterials ; Nanostructure ; Nanotechnology ; Observations and Techniques ; Parameter sensitivity ; Physics ; Physics and Astronomy ; Research Paper ; Spectra ; 几何参数 ; 几何效应 ; 格林函数理论 ; 碳纳米管 ; 能量模型</subject><ispartof>Science China. Physics, mechanics &amp; astronomy, 2011-05, Vol.54 (5), p.841-845</ispartof><rights>Science China Press and Springer-Verlag Berlin Heidelberg 2011</rights><rights>Science China Press and Springer-Verlag Berlin Heidelberg 2011.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-225b070e8ad9e956f34bf58c760ebfe761cec13522d3178818c0c8a40705cd473</citedby><cites>FETCH-LOGICAL-c408t-225b070e8ad9e956f34bf58c760ebfe761cec13522d3178818c0c8a40705cd473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/60109X/60109X.jpg</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Liu, LiZhao</creatorcontrib><creatorcontrib>Gao, HaiLi</creatorcontrib><creatorcontrib>Zhao, JiJun</creatorcontrib><creatorcontrib>Lu, JianPing</creatorcontrib><title>Quantum conductance of armchair carbon nanocoils: roles of geometry effects</title><title>Science China. Physics, mechanics &amp; astronomy</title><addtitle>Sci. China Phys. Mech. Astron</addtitle><addtitle>SCIENCE CHINA Physics, Mechanics & Astronomy</addtitle><description>Armchair carbon nanocoils (CNCs) with different geometric parameters are constructed and optimized using a tight-binding (TB) total energy model. The quantum conductance of these nanocoils is simulated employing a γ-orbital TB model incorpo- rated with the non-equilibrium Green's function theory. Compared with the perfect armchair carbon nanotubes (CNTs) and armchair CNTs with only Stone-Wales (SW) defects, the quantum conductance spectra of the armchair CNCs present distinct gaps around the Fermi level, which are mainly originated from the existence of sp3 carbon in the three-dimensional spiral structures. Moreover, the detailed conductance spectra of the armchair CNCs depend sensitively on their geometric parameters, such as tubular diameter and block-block distance.</description><subject>Astronomy</subject><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>Classical and Continuum Physics</subject><subject>Computer numerical control</subject><subject>Conductance</subject><subject>Diameters</subject><subject>Green's functions</subject><subject>Mathematical models</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Observations and Techniques</subject><subject>Parameter sensitivity</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Research Paper</subject><subject>Spectra</subject><subject>几何参数</subject><subject>几何效应</subject><subject>格林函数理论</subject><subject>碳纳米管</subject><subject>能量模型</subject><issn>1674-7348</issn><issn>1869-1927</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kU9O3TAQh6OKSkXAAbqLygI2oZ7Y8Z8lQtAigapK7dpy5o0foYkNdrJ4HKVn4U69Qv30kJBYMJuZxffNyP5V1WdgZ8CY-poBBOcNA2gEh655-lDtg5amAdOqvTJLJRrFhf5UHeV8z0pxw4QS-9Xtz8WFeZlqjGG14OwCUh197dKEd25INbrUx1AHFyLGYcz_nv_WKY6Ut9Sa4kRz2tTkPeGcD6uP3o2Zjl76QfX76vLXxffm5se364vzmwYF03PTtl3PFCPtVoZMJz0Xve80Ksmo96QkICHwrm1XHJTWoJGhdqI4Ha6E4gfVyW7vQ4qPC-XZTkNGGkcXKC7ZGqaMYNK0hTx9lyxfA6KTUuqCHr9B7-OSQnmHbQ3oThnGthTsKEwx50TePqRhcmljgdltGnaXhi1p2G0a9qk47c7JhQ1rSq-b35O-vBy6i2H9WDzbO_zjh5EsVwK4BsX_A9FhmGc</recordid><startdate>20110501</startdate><enddate>20110501</enddate><creator>Liu, LiZhao</creator><creator>Gao, HaiLi</creator><creator>Zhao, JiJun</creator><creator>Lu, JianPing</creator><general>SP Science China Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20110501</creationdate><title>Quantum conductance of armchair carbon nanocoils: roles of geometry effects</title><author>Liu, LiZhao ; Gao, HaiLi ; Zhao, JiJun ; Lu, JianPing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-225b070e8ad9e956f34bf58c760ebfe761cec13522d3178818c0c8a40705cd473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Astronomy</topic><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>Classical and Continuum Physics</topic><topic>Computer numerical control</topic><topic>Conductance</topic><topic>Diameters</topic><topic>Green's functions</topic><topic>Mathematical models</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Observations and Techniques</topic><topic>Parameter sensitivity</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Research Paper</topic><topic>Spectra</topic><topic>几何参数</topic><topic>几何效应</topic><topic>格林函数理论</topic><topic>碳纳米管</topic><topic>能量模型</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, LiZhao</creatorcontrib><creatorcontrib>Gao, HaiLi</creatorcontrib><creatorcontrib>Zhao, JiJun</creatorcontrib><creatorcontrib>Lu, JianPing</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Science China. Physics, mechanics &amp; astronomy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, LiZhao</au><au>Gao, HaiLi</au><au>Zhao, JiJun</au><au>Lu, JianPing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum conductance of armchair carbon nanocoils: roles of geometry effects</atitle><jtitle>Science China. Physics, mechanics &amp; astronomy</jtitle><stitle>Sci. China Phys. Mech. Astron</stitle><addtitle>SCIENCE CHINA Physics, Mechanics & Astronomy</addtitle><date>2011-05-01</date><risdate>2011</risdate><volume>54</volume><issue>5</issue><spage>841</spage><epage>845</epage><pages>841-845</pages><issn>1674-7348</issn><eissn>1869-1927</eissn><abstract>Armchair carbon nanocoils (CNCs) with different geometric parameters are constructed and optimized using a tight-binding (TB) total energy model. The quantum conductance of these nanocoils is simulated employing a γ-orbital TB model incorpo- rated with the non-equilibrium Green's function theory. Compared with the perfect armchair carbon nanotubes (CNTs) and armchair CNTs with only Stone-Wales (SW) defects, the quantum conductance spectra of the armchair CNCs present distinct gaps around the Fermi level, which are mainly originated from the existence of sp3 carbon in the three-dimensional spiral structures. Moreover, the detailed conductance spectra of the armchair CNCs depend sensitively on their geometric parameters, such as tubular diameter and block-block distance.</abstract><cop>Heidelberg</cop><pub>SP Science China Press</pub><doi>10.1007/s11433-011-4315-z</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-7348
ispartof Science China. Physics, mechanics & astronomy, 2011-05, Vol.54 (5), p.841-845
issn 1674-7348
1869-1927
language eng
recordid cdi_proquest_miscellaneous_907940692
source Springer Nature
subjects Astronomy
Carbon
Carbon nanotubes
Classical and Continuum Physics
Computer numerical control
Conductance
Diameters
Green's functions
Mathematical models
Nanocomposites
Nanomaterials
Nanostructure
Nanotechnology
Observations and Techniques
Parameter sensitivity
Physics
Physics and Astronomy
Research Paper
Spectra
几何参数
几何效应
格林函数理论
碳纳米管
能量模型
title Quantum conductance of armchair carbon nanocoils: roles of geometry effects
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T09%3A54%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20conductance%20of%20armchair%20carbon%20nanocoils%EF%BC%9A%20roles%20of%20geometry%20effects&rft.jtitle=Science%20China.%20Physics,%20mechanics%20&%20astronomy&rft.au=Liu,%20LiZhao&rft.date=2011-05-01&rft.volume=54&rft.issue=5&rft.spage=841&rft.epage=845&rft.pages=841-845&rft.issn=1674-7348&rft.eissn=1869-1927&rft_id=info:doi/10.1007/s11433-011-4315-z&rft_dat=%3Cproquest_cross%3E2918579008%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-225b070e8ad9e956f34bf58c760ebfe761cec13522d3178818c0c8a40705cd473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918579008&rft_id=info:pmid/&rft_cqvip_id=37413817&rfr_iscdi=true