Loading…
An approximation scheme for defining the conley index of isolated critical points
In the present paper, we study isolated critical points of functionals defined on a real separable Hilbert space H and satisfying the H-properness condition. We introduce the notion of Conley index of an isolated critical point and prove that it is homotopy invariant. The scheme suggested here for d...
Saved in:
Published in: | Differential equations 2004-01, Vol.40 (11), p.1539-1544 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c179t-2b9d2e75af1bb8bbb998414575c8d9028d53d14a00a4691014feb1b7ecca0c213 |
container_end_page | 1544 |
container_issue | 11 |
container_start_page | 1539 |
container_title | Differential equations |
container_volume | 40 |
creator | Bobylevy, N. A. Bulatov, A. V. Kuznetsov, Yu. O. |
description | In the present paper, we study isolated critical points of functionals defined on a real separable Hilbert space H and satisfying the H-properness condition. We introduce the notion of Conley index of an isolated critical point and prove that it is homotopy invariant. The scheme suggested here for defining the Conley index is based on the application of finite-dimensional Conley index theory to finite-dimensional restrictions of the functional to be studied.[PUBLICATION ABSTRACT] |
doi_str_mv | 10.1007/PL00021822 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_907940805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2183967491</sourcerecordid><originalsourceid>FETCH-LOGICAL-c179t-2b9d2e75af1bb8bbb998414575c8d9028d53d14a00a4691014feb1b7ecca0c213</originalsourceid><addsrcrecordid>eNpdkM1KAzEYRYMoWKsbnyC4EYTR78v8JFmW4h8MqKDrIclkbMo0GZMptG_vSAXB1d0cLodDyCXCLQLwu9caABgKxo7IDCsQWQ4iPyYzAGQZqyo8JWcprSdKcixn5G3hqRqGGHZuo0YXPE1mZTeWdiHS1nbOO_9Jx5WlJvje7qnzrd3R0FGXQq9G21IT3eiM6ukQnB_TOTnpVJ_sxe_OycfD_fvyKatfHp-XizozyOWYMS1bZnmpOtRaaK2lFAUWJS-NaCUw0ZZ5i4UCUEUlEbDorEbNrTEKDMN8Tq4Pv5P819amsdm4ZGzfK2_DNjUSuCxAQDmRV__IddhGP8k1vMoBOU6N5uTmAJkYUoq2a4Y4JYn7BqH5adv8tc2_Aa2Sax8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>763017108</pqid></control><display><type>article</type><title>An approximation scheme for defining the conley index of isolated critical points</title><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>Bobylevy, N. A. ; Bulatov, A. V. ; Kuznetsov, Yu. O.</creator><creatorcontrib>Bobylevy, N. A. ; Bulatov, A. V. ; Kuznetsov, Yu. O.</creatorcontrib><description>In the present paper, we study isolated critical points of functionals defined on a real separable Hilbert space H and satisfying the H-properness condition. We introduce the notion of Conley index of an isolated critical point and prove that it is homotopy invariant. The scheme suggested here for defining the Conley index is based on the application of finite-dimensional Conley index theory to finite-dimensional restrictions of the functional to be studied.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0012-2661</identifier><identifier>EISSN: 1608-3083</identifier><identifier>DOI: 10.1007/PL00021822</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>Approximation ; Constrictions ; Critical point ; Differential equations ; Functionals ; Hilbert space ; Invariants ; Mathematical analysis ; Studies</subject><ispartof>Differential equations, 2004-01, Vol.40 (11), p.1539-1544</ispartof><rights>MAIK "Nauka/Interperiodica" 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c179t-2b9d2e75af1bb8bbb998414575c8d9028d53d14a00a4691014feb1b7ecca0c213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/763017108?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11667,27901,27902,36037,36038,44339</link.rule.ids></links><search><creatorcontrib>Bobylevy, N. A.</creatorcontrib><creatorcontrib>Bulatov, A. V.</creatorcontrib><creatorcontrib>Kuznetsov, Yu. O.</creatorcontrib><title>An approximation scheme for defining the conley index of isolated critical points</title><title>Differential equations</title><description>In the present paper, we study isolated critical points of functionals defined on a real separable Hilbert space H and satisfying the H-properness condition. We introduce the notion of Conley index of an isolated critical point and prove that it is homotopy invariant. The scheme suggested here for defining the Conley index is based on the application of finite-dimensional Conley index theory to finite-dimensional restrictions of the functional to be studied.[PUBLICATION ABSTRACT]</description><subject>Approximation</subject><subject>Constrictions</subject><subject>Critical point</subject><subject>Differential equations</subject><subject>Functionals</subject><subject>Hilbert space</subject><subject>Invariants</subject><subject>Mathematical analysis</subject><subject>Studies</subject><issn>0012-2661</issn><issn>1608-3083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNpdkM1KAzEYRYMoWKsbnyC4EYTR78v8JFmW4h8MqKDrIclkbMo0GZMptG_vSAXB1d0cLodDyCXCLQLwu9caABgKxo7IDCsQWQ4iPyYzAGQZqyo8JWcprSdKcixn5G3hqRqGGHZuo0YXPE1mZTeWdiHS1nbOO_9Jx5WlJvje7qnzrd3R0FGXQq9G21IT3eiM6ukQnB_TOTnpVJ_sxe_OycfD_fvyKatfHp-XizozyOWYMS1bZnmpOtRaaK2lFAUWJS-NaCUw0ZZ5i4UCUEUlEbDorEbNrTEKDMN8Tq4Pv5P819amsdm4ZGzfK2_DNjUSuCxAQDmRV__IddhGP8k1vMoBOU6N5uTmAJkYUoq2a4Y4JYn7BqH5adv8tc2_Aa2Sax8</recordid><startdate>20040101</startdate><enddate>20040101</enddate><creator>Bobylevy, N. A.</creator><creator>Bulatov, A. V.</creator><creator>Kuznetsov, Yu. O.</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>04Q</scope><scope>04W</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20040101</creationdate><title>An approximation scheme for defining the conley index of isolated critical points</title><author>Bobylevy, N. A. ; Bulatov, A. V. ; Kuznetsov, Yu. O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c179t-2b9d2e75af1bb8bbb998414575c8d9028d53d14a00a4691014feb1b7ecca0c213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Approximation</topic><topic>Constrictions</topic><topic>Critical point</topic><topic>Differential equations</topic><topic>Functionals</topic><topic>Hilbert space</topic><topic>Invariants</topic><topic>Mathematical analysis</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bobylevy, N. A.</creatorcontrib><creatorcontrib>Bulatov, A. V.</creatorcontrib><creatorcontrib>Kuznetsov, Yu. O.</creatorcontrib><collection>CrossRef</collection><collection>India Database</collection><collection>India Database: Science & Technology</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bobylevy, N. A.</au><au>Bulatov, A. V.</au><au>Kuznetsov, Yu. O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An approximation scheme for defining the conley index of isolated critical points</atitle><jtitle>Differential equations</jtitle><date>2004-01-01</date><risdate>2004</risdate><volume>40</volume><issue>11</issue><spage>1539</spage><epage>1544</epage><pages>1539-1544</pages><issn>0012-2661</issn><eissn>1608-3083</eissn><abstract>In the present paper, we study isolated critical points of functionals defined on a real separable Hilbert space H and satisfying the H-properness condition. We introduce the notion of Conley index of an isolated critical point and prove that it is homotopy invariant. The scheme suggested here for defining the Conley index is based on the application of finite-dimensional Conley index theory to finite-dimensional restrictions of the functional to be studied.[PUBLICATION ABSTRACT]</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1007/PL00021822</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-2661 |
ispartof | Differential equations, 2004-01, Vol.40 (11), p.1539-1544 |
issn | 0012-2661 1608-3083 |
language | eng |
recordid | cdi_proquest_miscellaneous_907940805 |
source | ABI/INFORM Global; Springer Nature |
subjects | Approximation Constrictions Critical point Differential equations Functionals Hilbert space Invariants Mathematical analysis Studies |
title | An approximation scheme for defining the conley index of isolated critical points |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A39%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20approximation%20scheme%20for%20defining%20the%20conley%20index%20of%20isolated%20critical%20points&rft.jtitle=Differential%20equations&rft.au=Bobylevy,%20N.%20A.&rft.date=2004-01-01&rft.volume=40&rft.issue=11&rft.spage=1539&rft.epage=1544&rft.pages=1539-1544&rft.issn=0012-2661&rft.eissn=1608-3083&rft_id=info:doi/10.1007/PL00021822&rft_dat=%3Cproquest_cross%3E2183967491%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c179t-2b9d2e75af1bb8bbb998414575c8d9028d53d14a00a4691014feb1b7ecca0c213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=763017108&rft_id=info:pmid/&rfr_iscdi=true |