Loading…
Primal-dual interior-point method for thermodynamic gas-particle partitioning
A mathematical model for the computation of the phase equilibrium and gas-particle partitioning in atmospheric organic aerosols is presented. The thermodynamic equilibrium is determined by the global minimum of the Gibbs free energy under equality and inequality constraints for a system that involve...
Saved in:
Published in: | Computational optimization and applications 2011-04, Vol.48 (3), p.717-745 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c379t-86932129acf736941c4aa715a36ae58dbf3688e0cf057501b3d1e6566aef70323 |
---|---|
cites | cdi_FETCH-LOGICAL-c379t-86932129acf736941c4aa715a36ae58dbf3688e0cf057501b3d1e6566aef70323 |
container_end_page | 745 |
container_issue | 3 |
container_start_page | 717 |
container_title | Computational optimization and applications |
container_volume | 48 |
creator | Caboussat, Alexandre |
description | A mathematical model for the computation of the phase equilibrium and gas-particle partitioning in atmospheric organic aerosols is presented. The thermodynamic equilibrium is determined by the global minimum of the Gibbs free energy under equality and inequality constraints for a system that involves one gas phase and many liquid phases. A primal-dual interior-point algorithm is presented for the efficient solution of the phase equilibrium problem and the determination of the active constraints. The first order optimality conditions are solved with a Newton iteration. Sequential quadratic programming techniques are incorporated to decouple the different scales of the problem. Decomposition methods that control the inertia of the matrices arising in the resolution of the Newton system are proposed. A least-squares initialization of the algorithm is proposed to favor the convergence to a global minimum of the Gibbs free energy. Numerical results show the efficiency of the approach for the prediction of gas-liquid-liquid equilibrium for atmospheric organic aerosol particles. |
doi_str_mv | 10.1007/s10589-009-9262-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_907943749</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>907943749</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-86932129acf736941c4aa715a36ae58dbf3688e0cf057501b3d1e6566aef70323</originalsourceid><addsrcrecordid>eNqFkU1LxDAQhoMouK7-AG_Fi6foJGm-jrL4BYoe9ByybbqbpW1q0h7235t1BUEQTzPMPO8MMy9C5wSuCIC8TgS40hhAY00FxfwAzQiXDFOly0M0g1zFAoAdo5OUNpBByegMPb9G39kW15NtC9-PLvoQ8RByWnRuXIe6aEIsxrWLXai3ve18VaxswoONo69aV3wlow-971en6KixbXJn33GO3u9u3xYP-Onl_nFx84QrJvWIldCMEqpt1UgmdEmq0lpJuGXCOq7qZcOEUg6qBrjkQJasJk5wkbuNBEbZHF3u5w4xfEwujabzqXJta3sXpmQ0SF0yWep_SaVAcFoKlcmLX-QmTLHPZxjFFSGS59VzRPZQFUNK0TVm2P0vbg0BszPC7I0w-b9mZ4ThWUP3mpTZfuXiz-C_RZ_ak4q0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>858117570</pqid></control><display><type>article</type><title>Primal-dual interior-point method for thermodynamic gas-particle partitioning</title><source>ABI/INFORM Global</source><source>Springer Link</source><source>BSC - Ebsco (Business Source Ultimate)</source><creator>Caboussat, Alexandre</creator><creatorcontrib>Caboussat, Alexandre</creatorcontrib><description>A mathematical model for the computation of the phase equilibrium and gas-particle partitioning in atmospheric organic aerosols is presented. The thermodynamic equilibrium is determined by the global minimum of the Gibbs free energy under equality and inequality constraints for a system that involves one gas phase and many liquid phases. A primal-dual interior-point algorithm is presented for the efficient solution of the phase equilibrium problem and the determination of the active constraints. The first order optimality conditions are solved with a Newton iteration. Sequential quadratic programming techniques are incorporated to decouple the different scales of the problem. Decomposition methods that control the inertia of the matrices arising in the resolution of the Newton system are proposed. A least-squares initialization of the algorithm is proposed to favor the convergence to a global minimum of the Gibbs free energy. Numerical results show the efficiency of the approach for the prediction of gas-liquid-liquid equilibrium for atmospheric organic aerosol particles.</description><identifier>ISSN: 0926-6003</identifier><identifier>EISSN: 1573-2894</identifier><identifier>DOI: 10.1007/s10589-009-9262-5</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Aerosols ; Algorithms ; Atmospheric aerosols ; Atmospherics ; Computation ; Convex and Discrete Geometry ; Decomposition ; Energy ; Equilibrium ; Gibbs free energy ; Linear algebra ; Management Science ; Mathematical analysis ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Methods ; Operations Research ; Operations Research/Decision Theory ; Optimization ; Outdoor air quality ; Partitioning ; Quadratic programming ; Statistics ; Studies ; Thermodynamics</subject><ispartof>Computational optimization and applications, 2011-04, Vol.48 (3), p.717-745</ispartof><rights>Springer Science+Business Media, LLC 2009</rights><rights>Springer Science+Business Media, LLC 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-86932129acf736941c4aa715a36ae58dbf3688e0cf057501b3d1e6566aef70323</citedby><cites>FETCH-LOGICAL-c379t-86932129acf736941c4aa715a36ae58dbf3688e0cf057501b3d1e6566aef70323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/858117570/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/858117570?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,36061,44363,74895</link.rule.ids></links><search><creatorcontrib>Caboussat, Alexandre</creatorcontrib><title>Primal-dual interior-point method for thermodynamic gas-particle partitioning</title><title>Computational optimization and applications</title><addtitle>Comput Optim Appl</addtitle><description>A mathematical model for the computation of the phase equilibrium and gas-particle partitioning in atmospheric organic aerosols is presented. The thermodynamic equilibrium is determined by the global minimum of the Gibbs free energy under equality and inequality constraints for a system that involves one gas phase and many liquid phases. A primal-dual interior-point algorithm is presented for the efficient solution of the phase equilibrium problem and the determination of the active constraints. The first order optimality conditions are solved with a Newton iteration. Sequential quadratic programming techniques are incorporated to decouple the different scales of the problem. Decomposition methods that control the inertia of the matrices arising in the resolution of the Newton system are proposed. A least-squares initialization of the algorithm is proposed to favor the convergence to a global minimum of the Gibbs free energy. Numerical results show the efficiency of the approach for the prediction of gas-liquid-liquid equilibrium for atmospheric organic aerosol particles.</description><subject>Aerosols</subject><subject>Algorithms</subject><subject>Atmospheric aerosols</subject><subject>Atmospherics</subject><subject>Computation</subject><subject>Convex and Discrete Geometry</subject><subject>Decomposition</subject><subject>Energy</subject><subject>Equilibrium</subject><subject>Gibbs free energy</subject><subject>Linear algebra</subject><subject>Management Science</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Methods</subject><subject>Operations Research</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Outdoor air quality</subject><subject>Partitioning</subject><subject>Quadratic programming</subject><subject>Statistics</subject><subject>Studies</subject><subject>Thermodynamics</subject><issn>0926-6003</issn><issn>1573-2894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNqFkU1LxDAQhoMouK7-AG_Fi6foJGm-jrL4BYoe9ByybbqbpW1q0h7235t1BUEQTzPMPO8MMy9C5wSuCIC8TgS40hhAY00FxfwAzQiXDFOly0M0g1zFAoAdo5OUNpBByegMPb9G39kW15NtC9-PLvoQ8RByWnRuXIe6aEIsxrWLXai3ve18VaxswoONo69aV3wlow-971en6KixbXJn33GO3u9u3xYP-Onl_nFx84QrJvWIldCMEqpt1UgmdEmq0lpJuGXCOq7qZcOEUg6qBrjkQJasJk5wkbuNBEbZHF3u5w4xfEwujabzqXJta3sXpmQ0SF0yWep_SaVAcFoKlcmLX-QmTLHPZxjFFSGS59VzRPZQFUNK0TVm2P0vbg0BszPC7I0w-b9mZ4ThWUP3mpTZfuXiz-C_RZ_ak4q0</recordid><startdate>20110401</startdate><enddate>20110401</enddate><creator>Caboussat, Alexandre</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20110401</creationdate><title>Primal-dual interior-point method for thermodynamic gas-particle partitioning</title><author>Caboussat, Alexandre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-86932129acf736941c4aa715a36ae58dbf3688e0cf057501b3d1e6566aef70323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Aerosols</topic><topic>Algorithms</topic><topic>Atmospheric aerosols</topic><topic>Atmospherics</topic><topic>Computation</topic><topic>Convex and Discrete Geometry</topic><topic>Decomposition</topic><topic>Energy</topic><topic>Equilibrium</topic><topic>Gibbs free energy</topic><topic>Linear algebra</topic><topic>Management Science</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Methods</topic><topic>Operations Research</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Outdoor air quality</topic><topic>Partitioning</topic><topic>Quadratic programming</topic><topic>Statistics</topic><topic>Studies</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caboussat, Alexandre</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer science database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Computational optimization and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caboussat, Alexandre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Primal-dual interior-point method for thermodynamic gas-particle partitioning</atitle><jtitle>Computational optimization and applications</jtitle><stitle>Comput Optim Appl</stitle><date>2011-04-01</date><risdate>2011</risdate><volume>48</volume><issue>3</issue><spage>717</spage><epage>745</epage><pages>717-745</pages><issn>0926-6003</issn><eissn>1573-2894</eissn><abstract>A mathematical model for the computation of the phase equilibrium and gas-particle partitioning in atmospheric organic aerosols is presented. The thermodynamic equilibrium is determined by the global minimum of the Gibbs free energy under equality and inequality constraints for a system that involves one gas phase and many liquid phases. A primal-dual interior-point algorithm is presented for the efficient solution of the phase equilibrium problem and the determination of the active constraints. The first order optimality conditions are solved with a Newton iteration. Sequential quadratic programming techniques are incorporated to decouple the different scales of the problem. Decomposition methods that control the inertia of the matrices arising in the resolution of the Newton system are proposed. A least-squares initialization of the algorithm is proposed to favor the convergence to a global minimum of the Gibbs free energy. Numerical results show the efficiency of the approach for the prediction of gas-liquid-liquid equilibrium for atmospheric organic aerosol particles.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10589-009-9262-5</doi><tpages>29</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0926-6003 |
ispartof | Computational optimization and applications, 2011-04, Vol.48 (3), p.717-745 |
issn | 0926-6003 1573-2894 |
language | eng |
recordid | cdi_proquest_miscellaneous_907943749 |
source | ABI/INFORM Global; Springer Link; BSC - Ebsco (Business Source Ultimate) |
subjects | Aerosols Algorithms Atmospheric aerosols Atmospherics Computation Convex and Discrete Geometry Decomposition Energy Equilibrium Gibbs free energy Linear algebra Management Science Mathematical analysis Mathematical models Mathematics Mathematics and Statistics Methods Operations Research Operations Research/Decision Theory Optimization Outdoor air quality Partitioning Quadratic programming Statistics Studies Thermodynamics |
title | Primal-dual interior-point method for thermodynamic gas-particle partitioning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A04%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Primal-dual%20interior-point%20method%20for%20thermodynamic%20gas-particle%20partitioning&rft.jtitle=Computational%20optimization%20and%20applications&rft.au=Caboussat,%20Alexandre&rft.date=2011-04-01&rft.volume=48&rft.issue=3&rft.spage=717&rft.epage=745&rft.pages=717-745&rft.issn=0926-6003&rft.eissn=1573-2894&rft_id=info:doi/10.1007/s10589-009-9262-5&rft_dat=%3Cproquest_cross%3E907943749%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c379t-86932129acf736941c4aa715a36ae58dbf3688e0cf057501b3d1e6566aef70323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=858117570&rft_id=info:pmid/&rfr_iscdi=true |