Loading…
Robust stability of uncertain piecewise-linear systems: LMI approach
In this paper we propose sufficient conditions for the robust stability of time-invariant uncertain piecewise-linear systems using homogeneous polynomial Lyapunov functions. The proposed conditions are expressed in terms of linear matrix inequalities, which can be numerically determined. We solve th...
Saved in:
Published in: | Nonlinear dynamics 2011-01, Vol.63 (1-2), p.183-192 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c348t-ffe30946156e48e282845ead9532f0310b272bc17b8503d55063638094330e573 |
---|---|
cites | cdi_FETCH-LOGICAL-c348t-ffe30946156e48e282845ead9532f0310b272bc17b8503d55063638094330e573 |
container_end_page | 192 |
container_issue | 1-2 |
container_start_page | 183 |
container_title | Nonlinear dynamics |
container_volume | 63 |
creator | BenAbdallah, Abdallah Hammami, Mohamed Ali Kallel, Jalel |
description | In this paper we propose sufficient conditions for the robust stability of time-invariant uncertain piecewise-linear systems using homogeneous polynomial Lyapunov functions. The proposed conditions are expressed in terms of linear matrix inequalities, which can be numerically determined. We solve the stabilization of piecewise uncertain linear control systems by using state piecewise-linear feedback. We propose an illustrative example to show the efficiency of the proposed approach. |
doi_str_mv | 10.1007/s11071-010-9795-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_907950012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259484319</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-ffe30946156e48e282845ead9532f0310b272bc17b8503d55063638094330e573</originalsourceid><addsrcrecordid>eNp1kM9KxDAQh4MouK4-gLeCB0_RSdK0iTdZ_LOwIojC3kLanWqWbluTFtm38Vl8MrNUEARPc_l-v5n5CDllcMEA8svAGOSMAgOqcy0p3yMTJnNBeaaX-2QCmqcUNCwPyVEIawAQHNSE3Dy1xRD6JPS2cLXrt0lbJUNTou-ta5LOYYkfLiCtXYPWJ2EbetyEq2TxMP_6tF3nW1u-HZODytYBT37mlLzc3jzP7uni8W4-u17QUqSqp1WFAnSaMZlhqpArrlKJdqWl4BUIBgXPeVGyvFASxEpKyEQmVIwIARi_mZLzsTeufR8w9GbjQol1bRtsh2A0xN8BGI_k2R9y3Q6-iccZzqVOVSqYjhQbqdK3IXisTOfdxvqtYWB2Xs3o1USvZufV7Jr5mAmRbV7R_zb_H_oGAkx5ZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259484319</pqid></control><display><type>article</type><title>Robust stability of uncertain piecewise-linear systems: LMI approach</title><source>Springer Nature</source><creator>BenAbdallah, Abdallah ; Hammami, Mohamed Ali ; Kallel, Jalel</creator><creatorcontrib>BenAbdallah, Abdallah ; Hammami, Mohamed Ali ; Kallel, Jalel</creatorcontrib><description>In this paper we propose sufficient conditions for the robust stability of time-invariant uncertain piecewise-linear systems using homogeneous polynomial Lyapunov functions. The proposed conditions are expressed in terms of linear matrix inequalities, which can be numerically determined. We solve the stabilization of piecewise uncertain linear control systems by using state piecewise-linear feedback. We propose an illustrative example to show the efficiency of the proposed approach.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-010-9795-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Classical Mechanics ; Control ; Control systems ; Control theory ; Dynamical Systems ; Engineering ; Liapunov functions ; Linear control ; Linear matrix inequalities ; Linear systems ; Lyapunov functions ; Mathematical analysis ; Matrix methods ; Mechanical Engineering ; Nonlinear dynamics ; Original Paper ; Polynomials ; Robustness (mathematics) ; Stability ; Stabilization ; Vibration</subject><ispartof>Nonlinear dynamics, 2011-01, Vol.63 (1-2), p.183-192</ispartof><rights>Springer Science+Business Media B.V. 2010</rights><rights>Nonlinear Dynamics is a copyright of Springer, (2010). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-ffe30946156e48e282845ead9532f0310b272bc17b8503d55063638094330e573</citedby><cites>FETCH-LOGICAL-c348t-ffe30946156e48e282845ead9532f0310b272bc17b8503d55063638094330e573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>BenAbdallah, Abdallah</creatorcontrib><creatorcontrib>Hammami, Mohamed Ali</creatorcontrib><creatorcontrib>Kallel, Jalel</creatorcontrib><title>Robust stability of uncertain piecewise-linear systems: LMI approach</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>In this paper we propose sufficient conditions for the robust stability of time-invariant uncertain piecewise-linear systems using homogeneous polynomial Lyapunov functions. The proposed conditions are expressed in terms of linear matrix inequalities, which can be numerically determined. We solve the stabilization of piecewise uncertain linear control systems by using state piecewise-linear feedback. We propose an illustrative example to show the efficiency of the proposed approach.</description><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Control systems</subject><subject>Control theory</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Liapunov functions</subject><subject>Linear control</subject><subject>Linear matrix inequalities</subject><subject>Linear systems</subject><subject>Lyapunov functions</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>Mechanical Engineering</subject><subject>Nonlinear dynamics</subject><subject>Original Paper</subject><subject>Polynomials</subject><subject>Robustness (mathematics)</subject><subject>Stability</subject><subject>Stabilization</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kM9KxDAQh4MouK4-gLeCB0_RSdK0iTdZ_LOwIojC3kLanWqWbluTFtm38Vl8MrNUEARPc_l-v5n5CDllcMEA8svAGOSMAgOqcy0p3yMTJnNBeaaX-2QCmqcUNCwPyVEIawAQHNSE3Dy1xRD6JPS2cLXrt0lbJUNTou-ta5LOYYkfLiCtXYPWJ2EbetyEq2TxMP_6tF3nW1u-HZODytYBT37mlLzc3jzP7uni8W4-u17QUqSqp1WFAnSaMZlhqpArrlKJdqWl4BUIBgXPeVGyvFASxEpKyEQmVIwIARi_mZLzsTeufR8w9GbjQol1bRtsh2A0xN8BGI_k2R9y3Q6-iccZzqVOVSqYjhQbqdK3IXisTOfdxvqtYWB2Xs3o1USvZufV7Jr5mAmRbV7R_zb_H_oGAkx5ZA</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>BenAbdallah, Abdallah</creator><creator>Hammami, Mohamed Ali</creator><creator>Kallel, Jalel</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110101</creationdate><title>Robust stability of uncertain piecewise-linear systems: LMI approach</title><author>BenAbdallah, Abdallah ; Hammami, Mohamed Ali ; Kallel, Jalel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-ffe30946156e48e282845ead9532f0310b272bc17b8503d55063638094330e573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Control systems</topic><topic>Control theory</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Liapunov functions</topic><topic>Linear control</topic><topic>Linear matrix inequalities</topic><topic>Linear systems</topic><topic>Lyapunov functions</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>Mechanical Engineering</topic><topic>Nonlinear dynamics</topic><topic>Original Paper</topic><topic>Polynomials</topic><topic>Robustness (mathematics)</topic><topic>Stability</topic><topic>Stabilization</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BenAbdallah, Abdallah</creatorcontrib><creatorcontrib>Hammami, Mohamed Ali</creatorcontrib><creatorcontrib>Kallel, Jalel</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BenAbdallah, Abdallah</au><au>Hammami, Mohamed Ali</au><au>Kallel, Jalel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust stability of uncertain piecewise-linear systems: LMI approach</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2011-01-01</date><risdate>2011</risdate><volume>63</volume><issue>1-2</issue><spage>183</spage><epage>192</epage><pages>183-192</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>In this paper we propose sufficient conditions for the robust stability of time-invariant uncertain piecewise-linear systems using homogeneous polynomial Lyapunov functions. The proposed conditions are expressed in terms of linear matrix inequalities, which can be numerically determined. We solve the stabilization of piecewise uncertain linear control systems by using state piecewise-linear feedback. We propose an illustrative example to show the efficiency of the proposed approach.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-010-9795-2</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-090X |
ispartof | Nonlinear dynamics, 2011-01, Vol.63 (1-2), p.183-192 |
issn | 0924-090X 1573-269X |
language | eng |
recordid | cdi_proquest_miscellaneous_907950012 |
source | Springer Nature |
subjects | Automotive Engineering Classical Mechanics Control Control systems Control theory Dynamical Systems Engineering Liapunov functions Linear control Linear matrix inequalities Linear systems Lyapunov functions Mathematical analysis Matrix methods Mechanical Engineering Nonlinear dynamics Original Paper Polynomials Robustness (mathematics) Stability Stabilization Vibration |
title | Robust stability of uncertain piecewise-linear systems: LMI approach |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T17%3A48%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20stability%20of%20uncertain%20piecewise-linear%20systems:%20LMI%C2%A0approach&rft.jtitle=Nonlinear%20dynamics&rft.au=BenAbdallah,%20Abdallah&rft.date=2011-01-01&rft.volume=63&rft.issue=1-2&rft.spage=183&rft.epage=192&rft.pages=183-192&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-010-9795-2&rft_dat=%3Cproquest_cross%3E2259484319%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c348t-ffe30946156e48e282845ead9532f0310b272bc17b8503d55063638094330e573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2259484319&rft_id=info:pmid/&rfr_iscdi=true |