Loading…

Robust stability of uncertain piecewise-linear systems: LMI approach

In this paper we propose sufficient conditions for the robust stability of time-invariant uncertain piecewise-linear systems using homogeneous polynomial Lyapunov functions. The proposed conditions are expressed in terms of linear matrix inequalities, which can be numerically determined. We solve th...

Full description

Saved in:
Bibliographic Details
Published in:Nonlinear dynamics 2011-01, Vol.63 (1-2), p.183-192
Main Authors: BenAbdallah, Abdallah, Hammami, Mohamed Ali, Kallel, Jalel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c348t-ffe30946156e48e282845ead9532f0310b272bc17b8503d55063638094330e573
cites cdi_FETCH-LOGICAL-c348t-ffe30946156e48e282845ead9532f0310b272bc17b8503d55063638094330e573
container_end_page 192
container_issue 1-2
container_start_page 183
container_title Nonlinear dynamics
container_volume 63
creator BenAbdallah, Abdallah
Hammami, Mohamed Ali
Kallel, Jalel
description In this paper we propose sufficient conditions for the robust stability of time-invariant uncertain piecewise-linear systems using homogeneous polynomial Lyapunov functions. The proposed conditions are expressed in terms of linear matrix inequalities, which can be numerically determined. We solve the stabilization of piecewise uncertain linear control systems by using state piecewise-linear feedback. We propose an illustrative example to show the efficiency of the proposed approach.
doi_str_mv 10.1007/s11071-010-9795-2
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_907950012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259484319</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-ffe30946156e48e282845ead9532f0310b272bc17b8503d55063638094330e573</originalsourceid><addsrcrecordid>eNp1kM9KxDAQh4MouK4-gLeCB0_RSdK0iTdZ_LOwIojC3kLanWqWbluTFtm38Vl8MrNUEARPc_l-v5n5CDllcMEA8svAGOSMAgOqcy0p3yMTJnNBeaaX-2QCmqcUNCwPyVEIawAQHNSE3Dy1xRD6JPS2cLXrt0lbJUNTou-ta5LOYYkfLiCtXYPWJ2EbetyEq2TxMP_6tF3nW1u-HZODytYBT37mlLzc3jzP7uni8W4-u17QUqSqp1WFAnSaMZlhqpArrlKJdqWl4BUIBgXPeVGyvFASxEpKyEQmVIwIARi_mZLzsTeufR8w9GbjQol1bRtsh2A0xN8BGI_k2R9y3Q6-iccZzqVOVSqYjhQbqdK3IXisTOfdxvqtYWB2Xs3o1USvZufV7Jr5mAmRbV7R_zb_H_oGAkx5ZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259484319</pqid></control><display><type>article</type><title>Robust stability of uncertain piecewise-linear systems: LMI approach</title><source>Springer Nature</source><creator>BenAbdallah, Abdallah ; Hammami, Mohamed Ali ; Kallel, Jalel</creator><creatorcontrib>BenAbdallah, Abdallah ; Hammami, Mohamed Ali ; Kallel, Jalel</creatorcontrib><description>In this paper we propose sufficient conditions for the robust stability of time-invariant uncertain piecewise-linear systems using homogeneous polynomial Lyapunov functions. The proposed conditions are expressed in terms of linear matrix inequalities, which can be numerically determined. We solve the stabilization of piecewise uncertain linear control systems by using state piecewise-linear feedback. We propose an illustrative example to show the efficiency of the proposed approach.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-010-9795-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Classical Mechanics ; Control ; Control systems ; Control theory ; Dynamical Systems ; Engineering ; Liapunov functions ; Linear control ; Linear matrix inequalities ; Linear systems ; Lyapunov functions ; Mathematical analysis ; Matrix methods ; Mechanical Engineering ; Nonlinear dynamics ; Original Paper ; Polynomials ; Robustness (mathematics) ; Stability ; Stabilization ; Vibration</subject><ispartof>Nonlinear dynamics, 2011-01, Vol.63 (1-2), p.183-192</ispartof><rights>Springer Science+Business Media B.V. 2010</rights><rights>Nonlinear Dynamics is a copyright of Springer, (2010). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-ffe30946156e48e282845ead9532f0310b272bc17b8503d55063638094330e573</citedby><cites>FETCH-LOGICAL-c348t-ffe30946156e48e282845ead9532f0310b272bc17b8503d55063638094330e573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>BenAbdallah, Abdallah</creatorcontrib><creatorcontrib>Hammami, Mohamed Ali</creatorcontrib><creatorcontrib>Kallel, Jalel</creatorcontrib><title>Robust stability of uncertain piecewise-linear systems: LMI approach</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>In this paper we propose sufficient conditions for the robust stability of time-invariant uncertain piecewise-linear systems using homogeneous polynomial Lyapunov functions. The proposed conditions are expressed in terms of linear matrix inequalities, which can be numerically determined. We solve the stabilization of piecewise uncertain linear control systems by using state piecewise-linear feedback. We propose an illustrative example to show the efficiency of the proposed approach.</description><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Control systems</subject><subject>Control theory</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Liapunov functions</subject><subject>Linear control</subject><subject>Linear matrix inequalities</subject><subject>Linear systems</subject><subject>Lyapunov functions</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>Mechanical Engineering</subject><subject>Nonlinear dynamics</subject><subject>Original Paper</subject><subject>Polynomials</subject><subject>Robustness (mathematics)</subject><subject>Stability</subject><subject>Stabilization</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kM9KxDAQh4MouK4-gLeCB0_RSdK0iTdZ_LOwIojC3kLanWqWbluTFtm38Vl8MrNUEARPc_l-v5n5CDllcMEA8svAGOSMAgOqcy0p3yMTJnNBeaaX-2QCmqcUNCwPyVEIawAQHNSE3Dy1xRD6JPS2cLXrt0lbJUNTou-ta5LOYYkfLiCtXYPWJ2EbetyEq2TxMP_6tF3nW1u-HZODytYBT37mlLzc3jzP7uni8W4-u17QUqSqp1WFAnSaMZlhqpArrlKJdqWl4BUIBgXPeVGyvFASxEpKyEQmVIwIARi_mZLzsTeufR8w9GbjQol1bRtsh2A0xN8BGI_k2R9y3Q6-iccZzqVOVSqYjhQbqdK3IXisTOfdxvqtYWB2Xs3o1USvZufV7Jr5mAmRbV7R_zb_H_oGAkx5ZA</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>BenAbdallah, Abdallah</creator><creator>Hammami, Mohamed Ali</creator><creator>Kallel, Jalel</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110101</creationdate><title>Robust stability of uncertain piecewise-linear systems: LMI approach</title><author>BenAbdallah, Abdallah ; Hammami, Mohamed Ali ; Kallel, Jalel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-ffe30946156e48e282845ead9532f0310b272bc17b8503d55063638094330e573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Control systems</topic><topic>Control theory</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Liapunov functions</topic><topic>Linear control</topic><topic>Linear matrix inequalities</topic><topic>Linear systems</topic><topic>Lyapunov functions</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>Mechanical Engineering</topic><topic>Nonlinear dynamics</topic><topic>Original Paper</topic><topic>Polynomials</topic><topic>Robustness (mathematics)</topic><topic>Stability</topic><topic>Stabilization</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BenAbdallah, Abdallah</creatorcontrib><creatorcontrib>Hammami, Mohamed Ali</creatorcontrib><creatorcontrib>Kallel, Jalel</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BenAbdallah, Abdallah</au><au>Hammami, Mohamed Ali</au><au>Kallel, Jalel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust stability of uncertain piecewise-linear systems: LMI approach</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2011-01-01</date><risdate>2011</risdate><volume>63</volume><issue>1-2</issue><spage>183</spage><epage>192</epage><pages>183-192</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>In this paper we propose sufficient conditions for the robust stability of time-invariant uncertain piecewise-linear systems using homogeneous polynomial Lyapunov functions. The proposed conditions are expressed in terms of linear matrix inequalities, which can be numerically determined. We solve the stabilization of piecewise uncertain linear control systems by using state piecewise-linear feedback. We propose an illustrative example to show the efficiency of the proposed approach.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-010-9795-2</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2011-01, Vol.63 (1-2), p.183-192
issn 0924-090X
1573-269X
language eng
recordid cdi_proquest_miscellaneous_907950012
source Springer Nature
subjects Automotive Engineering
Classical Mechanics
Control
Control systems
Control theory
Dynamical Systems
Engineering
Liapunov functions
Linear control
Linear matrix inequalities
Linear systems
Lyapunov functions
Mathematical analysis
Matrix methods
Mechanical Engineering
Nonlinear dynamics
Original Paper
Polynomials
Robustness (mathematics)
Stability
Stabilization
Vibration
title Robust stability of uncertain piecewise-linear systems: LMI approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T17%3A48%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20stability%20of%20uncertain%20piecewise-linear%20systems:%20LMI%C2%A0approach&rft.jtitle=Nonlinear%20dynamics&rft.au=BenAbdallah,%20Abdallah&rft.date=2011-01-01&rft.volume=63&rft.issue=1-2&rft.spage=183&rft.epage=192&rft.pages=183-192&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-010-9795-2&rft_dat=%3Cproquest_cross%3E2259484319%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c348t-ffe30946156e48e282845ead9532f0310b272bc17b8503d55063638094330e573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2259484319&rft_id=info:pmid/&rfr_iscdi=true