Loading…
Multi-objective Genetic Algorithms for grouping problems
Linear Linkage Encoding (LLE) is a convenient representational scheme for Genetic Algorithms (GAs). LLE can be used when a GA is applied to a grouping problem and this representation does not suffer from the redundancy problem that exists in classical encoding schemes. LLE has been mainly used in da...
Saved in:
Published in: | Applied intelligence (Dordrecht, Netherlands) Netherlands), 2010-10, Vol.33 (2), p.179-192 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c347t-ba4f4bb9a0fdd19a7a374b36407a38009224c0839193c7171ccd18b8c3ee49783 |
---|---|
cites | cdi_FETCH-LOGICAL-c347t-ba4f4bb9a0fdd19a7a374b36407a38009224c0839193c7171ccd18b8c3ee49783 |
container_end_page | 192 |
container_issue | 2 |
container_start_page | 179 |
container_title | Applied intelligence (Dordrecht, Netherlands) |
container_volume | 33 |
creator | Korkmaz, Emin Erkan |
description | Linear Linkage Encoding (LLE) is a convenient representational scheme for
Genetic Algorithms
(GAs). LLE can be used when a GA is applied to a grouping problem and this representation does not suffer from the redundancy problem that exists in classical encoding schemes. LLE has been mainly used in data clustering. One-point crossover has been utilized in these applications. In fact, the standard recombination operators are not suitable to be used with LLE. These operators can easily disturb the building blocks and cannot fully exploit the power of the representation. In this study, a new crossover operator is introduced for LLE. The operator which is named as group-crossover is tested on the data clustering problem and a very significant performance increase is obtained compared to classical one-point and uniform crossover operations. Graph coloring is the second domain where the proposed framework is tested. This is a challenging combinatorial optimization problem for search methods and no significant success has been obtained on the problem with pure GA. The experimental results denote that GAs powered with LLE can provide satisfactory outcomes in this domain, too. |
doi_str_mv | 10.1007/s10489-008-0158-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_907951667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2376368191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-ba4f4bb9a0fdd19a7a374b36407a38009224c0839193c7171ccd18b8c3ee49783</originalsourceid><addsrcrecordid>eNp1kMFKxDAQhoMouK4-gLfixVN00mSb5LgsugorXhS8hSSb1ixtsyat4NubpYIgeJo5fP_Mz4fQJYEbAsBvEwEmJAYQGMhCYHqEZmTBKeZM8mM0A1kyXFXy7RSdpbQDAEqBzJB4GtvB42B2zg7-0xVr17vB22LZNiH64b1LRR1i0cQw7n3fFPsYTOu6dI5Oat0md_Ez5-j1_u5l9YA3z-vH1XKDLWV8wEazmhkjNdTbLZGaa8qZoRWDvAnItUpmQVBJJLWccGLtlggjLHUuNxd0jq6nu_nxx-jSoDqfrGtb3bswJiWBywWpKp7Jqz_kLoyxz-WU4CWIEijLEJkgG0NK0dVqH32n45cioA4m1WRSZZPqYFLRnCmnTMps37j4e_j_0Ddw43Tv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>872082034</pqid></control><display><type>article</type><title>Multi-objective Genetic Algorithms for grouping problems</title><source>ABI/INFORM global</source><source>Springer Nature</source><creator>Korkmaz, Emin Erkan</creator><creatorcontrib>Korkmaz, Emin Erkan</creatorcontrib><description>Linear Linkage Encoding (LLE) is a convenient representational scheme for
Genetic Algorithms
(GAs). LLE can be used when a GA is applied to a grouping problem and this representation does not suffer from the redundancy problem that exists in classical encoding schemes. LLE has been mainly used in data clustering. One-point crossover has been utilized in these applications. In fact, the standard recombination operators are not suitable to be used with LLE. These operators can easily disturb the building blocks and cannot fully exploit the power of the representation. In this study, a new crossover operator is introduced for LLE. The operator which is named as group-crossover is tested on the data clustering problem and a very significant performance increase is obtained compared to classical one-point and uniform crossover operations. Graph coloring is the second domain where the proposed framework is tested. This is a challenging combinatorial optimization problem for search methods and no significant success has been obtained on the problem with pure GA. The experimental results denote that GAs powered with LLE can provide satisfactory outcomes in this domain, too.</description><identifier>ISSN: 0924-669X</identifier><identifier>EISSN: 1573-7497</identifier><identifier>DOI: 10.1007/s10489-008-0158-3</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Artificial Intelligence ; Clustering ; Combinatorial analysis ; Computer Science ; Crossovers ; Encoding ; Genetic algorithms ; Graph coloring ; Machines ; Manufacturing ; Mechanical Engineering ; Mutation ; Operators ; Optimization ; Processes ; Representations</subject><ispartof>Applied intelligence (Dordrecht, Netherlands), 2010-10, Vol.33 (2), p.179-192</ispartof><rights>Springer Science+Business Media, LLC 2008</rights><rights>Springer Science+Business Media, LLC 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-ba4f4bb9a0fdd19a7a374b36407a38009224c0839193c7171ccd18b8c3ee49783</citedby><cites>FETCH-LOGICAL-c347t-ba4f4bb9a0fdd19a7a374b36407a38009224c0839193c7171ccd18b8c3ee49783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/872082034/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/872082034?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11667,27901,27902,36037,36038,44339,74638</link.rule.ids></links><search><creatorcontrib>Korkmaz, Emin Erkan</creatorcontrib><title>Multi-objective Genetic Algorithms for grouping problems</title><title>Applied intelligence (Dordrecht, Netherlands)</title><addtitle>Appl Intell</addtitle><description>Linear Linkage Encoding (LLE) is a convenient representational scheme for
Genetic Algorithms
(GAs). LLE can be used when a GA is applied to a grouping problem and this representation does not suffer from the redundancy problem that exists in classical encoding schemes. LLE has been mainly used in data clustering. One-point crossover has been utilized in these applications. In fact, the standard recombination operators are not suitable to be used with LLE. These operators can easily disturb the building blocks and cannot fully exploit the power of the representation. In this study, a new crossover operator is introduced for LLE. The operator which is named as group-crossover is tested on the data clustering problem and a very significant performance increase is obtained compared to classical one-point and uniform crossover operations. Graph coloring is the second domain where the proposed framework is tested. This is a challenging combinatorial optimization problem for search methods and no significant success has been obtained on the problem with pure GA. The experimental results denote that GAs powered with LLE can provide satisfactory outcomes in this domain, too.</description><subject>Artificial Intelligence</subject><subject>Clustering</subject><subject>Combinatorial analysis</subject><subject>Computer Science</subject><subject>Crossovers</subject><subject>Encoding</subject><subject>Genetic algorithms</subject><subject>Graph coloring</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Mechanical Engineering</subject><subject>Mutation</subject><subject>Operators</subject><subject>Optimization</subject><subject>Processes</subject><subject>Representations</subject><issn>0924-669X</issn><issn>1573-7497</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kMFKxDAQhoMouK4-gLfixVN00mSb5LgsugorXhS8hSSb1ixtsyat4NubpYIgeJo5fP_Mz4fQJYEbAsBvEwEmJAYQGMhCYHqEZmTBKeZM8mM0A1kyXFXy7RSdpbQDAEqBzJB4GtvB42B2zg7-0xVr17vB22LZNiH64b1LRR1i0cQw7n3fFPsYTOu6dI5Oat0md_Ez5-j1_u5l9YA3z-vH1XKDLWV8wEazmhkjNdTbLZGaa8qZoRWDvAnItUpmQVBJJLWccGLtlggjLHUuNxd0jq6nu_nxx-jSoDqfrGtb3bswJiWBywWpKp7Jqz_kLoyxz-WU4CWIEijLEJkgG0NK0dVqH32n45cioA4m1WRSZZPqYFLRnCmnTMps37j4e_j_0Ddw43Tv</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Korkmaz, Emin Erkan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20101001</creationdate><title>Multi-objective Genetic Algorithms for grouping problems</title><author>Korkmaz, Emin Erkan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-ba4f4bb9a0fdd19a7a374b36407a38009224c0839193c7171ccd18b8c3ee49783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Artificial Intelligence</topic><topic>Clustering</topic><topic>Combinatorial analysis</topic><topic>Computer Science</topic><topic>Crossovers</topic><topic>Encoding</topic><topic>Genetic algorithms</topic><topic>Graph coloring</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Mechanical Engineering</topic><topic>Mutation</topic><topic>Operators</topic><topic>Optimization</topic><topic>Processes</topic><topic>Representations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Korkmaz, Emin Erkan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM global</collection><collection>Computing Database</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Korkmaz, Emin Erkan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-objective Genetic Algorithms for grouping problems</atitle><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle><stitle>Appl Intell</stitle><date>2010-10-01</date><risdate>2010</risdate><volume>33</volume><issue>2</issue><spage>179</spage><epage>192</epage><pages>179-192</pages><issn>0924-669X</issn><eissn>1573-7497</eissn><abstract>Linear Linkage Encoding (LLE) is a convenient representational scheme for
Genetic Algorithms
(GAs). LLE can be used when a GA is applied to a grouping problem and this representation does not suffer from the redundancy problem that exists in classical encoding schemes. LLE has been mainly used in data clustering. One-point crossover has been utilized in these applications. In fact, the standard recombination operators are not suitable to be used with LLE. These operators can easily disturb the building blocks and cannot fully exploit the power of the representation. In this study, a new crossover operator is introduced for LLE. The operator which is named as group-crossover is tested on the data clustering problem and a very significant performance increase is obtained compared to classical one-point and uniform crossover operations. Graph coloring is the second domain where the proposed framework is tested. This is a challenging combinatorial optimization problem for search methods and no significant success has been obtained on the problem with pure GA. The experimental results denote that GAs powered with LLE can provide satisfactory outcomes in this domain, too.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10489-008-0158-3</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-669X |
ispartof | Applied intelligence (Dordrecht, Netherlands), 2010-10, Vol.33 (2), p.179-192 |
issn | 0924-669X 1573-7497 |
language | eng |
recordid | cdi_proquest_miscellaneous_907951667 |
source | ABI/INFORM global; Springer Nature |
subjects | Artificial Intelligence Clustering Combinatorial analysis Computer Science Crossovers Encoding Genetic algorithms Graph coloring Machines Manufacturing Mechanical Engineering Mutation Operators Optimization Processes Representations |
title | Multi-objective Genetic Algorithms for grouping problems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A09%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-objective%20Genetic%20Algorithms%20for%20grouping%20problems&rft.jtitle=Applied%20intelligence%20(Dordrecht,%20Netherlands)&rft.au=Korkmaz,%20Emin%20Erkan&rft.date=2010-10-01&rft.volume=33&rft.issue=2&rft.spage=179&rft.epage=192&rft.pages=179-192&rft.issn=0924-669X&rft.eissn=1573-7497&rft_id=info:doi/10.1007/s10489-008-0158-3&rft_dat=%3Cproquest_cross%3E2376368191%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c347t-ba4f4bb9a0fdd19a7a374b36407a38009224c0839193c7171ccd18b8c3ee49783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=872082034&rft_id=info:pmid/&rfr_iscdi=true |