Loading…
Multi-Level Partition of Unity Algebraic Point Set Surfaces
We present a multi-level partition of unity algebraic set surfaces (MPU-APSS) for surface reconstruction which can be represented by either a projection or in an implicit form. An algebraic point set surface (APSS) defines a smooth surface from a set of unorganized points using local moving least-sq...
Saved in:
Published in: | Journal of computer science and technology 2011-03, Vol.26 (2), p.229-238 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c347t-c1ea72433117f807a8c042ca2142cb91957d93eead5c7f7636ed64e86d110c083 |
---|---|
cites | cdi_FETCH-LOGICAL-c347t-c1ea72433117f807a8c042ca2142cb91957d93eead5c7f7636ed64e86d110c083 |
container_end_page | 238 |
container_issue | 2 |
container_start_page | 229 |
container_title | Journal of computer science and technology |
container_volume | 26 |
creator | Xiao, Chun-Xia |
description | We present a multi-level partition of unity algebraic set surfaces (MPU-APSS) for surface reconstruction which can be represented by either a projection or in an implicit form. An algebraic point set surface (APSS) defines a smooth surface from a set of unorganized points using local moving least-squares (MLS) fitting of algebraic spheres. However, due to the local nature, APSS does not work well for geometry editing and modeling. Instead, our method builds an implicit approximation function for the scattered point set based on the partition of unity approach. By using an octree subdivision strategy, we first adaptively construct local algebraic spheres for the point set, and then apply weighting functions to blend together these local shape functions. Finally, we compute an error-controlled approximation of the signed distance function from the surface. In addition, we present an efficient projection operator which makes our representation suitable for point set filtering and dynamic point resampling. We demonstrate the effectiveness of our unified approach for both surface reconstruction and geometry modeling such as surface completion. |
doi_str_mv | 10.1007/s11390-011-9429-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_907953621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2282929641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-c1ea72433117f807a8c042ca2142cb91957d93eead5c7f7636ed64e86d110c083</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwNvixVN0JsluNngq4j-oWNCeQ5rNlpTtbk12hX57U1YQBA_zZg6_9xgeIZcINwggbyMiV0ABkSrBFGVHZIJlAVRIoY7TDQBUJTklZzFuALgEISbk7nVoek_n7ss12cKE3ve-a7Ouzpat7_fZrFm7VTDeZovOt3327tIMoTbWxXNyUpsmuoufPSXLx4eP-2c6f3t6uZ_NqeVC9tSiM5IJzhFlXYI0pQXBrGGYdKVQ5bJS3DlT5VbWsuCFqwrhyqJCBAsln5LrMXcXus_BxV5vfbSuaUzruiFqBVLlvGCYyKs_5KYbQpue02UulBKq5AnCEbKhizG4Wu-C35qw1wj6UKYey9SpTH0oU7PkYaMnJrZdu_Ab_L_pG3wQdNk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>854994983</pqid></control><display><type>article</type><title>Multi-Level Partition of Unity Algebraic Point Set Surfaces</title><source>ABI/INFORM Global</source><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Xiao, Chun-Xia</creator><creatorcontrib>Xiao, Chun-Xia</creatorcontrib><description>We present a multi-level partition of unity algebraic set surfaces (MPU-APSS) for surface reconstruction which can be represented by either a projection or in an implicit form. An algebraic point set surface (APSS) defines a smooth surface from a set of unorganized points using local moving least-squares (MLS) fitting of algebraic spheres. However, due to the local nature, APSS does not work well for geometry editing and modeling. Instead, our method builds an implicit approximation function for the scattered point set based on the partition of unity approach. By using an octree subdivision strategy, we first adaptively construct local algebraic spheres for the point set, and then apply weighting functions to blend together these local shape functions. Finally, we compute an error-controlled approximation of the signed distance function from the surface. In addition, we present an efficient projection operator which makes our representation suitable for point set filtering and dynamic point resampling. We demonstrate the effectiveness of our unified approach for both surface reconstruction and geometry modeling such as surface completion.</description><identifier>ISSN: 1000-9000</identifier><identifier>EISSN: 1860-4749</identifier><identifier>DOI: 10.1007/s11390-011-9429-2</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algebra ; Algorithms ; Analysis ; Approximation ; Artificial Intelligence ; Computer Science ; Construction ; Data Structures and Information Theory ; Geometry ; Information Systems Applications (incl.Internet) ; Mathematical analysis ; Mathematical models ; Partitions ; Projection ; R&D ; Reconstruction ; Research & development ; Software Engineering ; Spheres ; Studies ; Theory of Computation ; Topological manifolds ; Unity</subject><ispartof>Journal of computer science and technology, 2011-03, Vol.26 (2), p.229-238</ispartof><rights>Springer 2011</rights><rights>Springer 2011.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-c1ea72433117f807a8c042ca2142cb91957d93eead5c7f7636ed64e86d110c083</citedby><cites>FETCH-LOGICAL-c347t-c1ea72433117f807a8c042ca2142cb91957d93eead5c7f7636ed64e86d110c083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/854994983?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11667,27901,27902,36037,36038,44339</link.rule.ids></links><search><creatorcontrib>Xiao, Chun-Xia</creatorcontrib><title>Multi-Level Partition of Unity Algebraic Point Set Surfaces</title><title>Journal of computer science and technology</title><addtitle>J. Comput. Sci. Technol</addtitle><description>We present a multi-level partition of unity algebraic set surfaces (MPU-APSS) for surface reconstruction which can be represented by either a projection or in an implicit form. An algebraic point set surface (APSS) defines a smooth surface from a set of unorganized points using local moving least-squares (MLS) fitting of algebraic spheres. However, due to the local nature, APSS does not work well for geometry editing and modeling. Instead, our method builds an implicit approximation function for the scattered point set based on the partition of unity approach. By using an octree subdivision strategy, we first adaptively construct local algebraic spheres for the point set, and then apply weighting functions to blend together these local shape functions. Finally, we compute an error-controlled approximation of the signed distance function from the surface. In addition, we present an efficient projection operator which makes our representation suitable for point set filtering and dynamic point resampling. We demonstrate the effectiveness of our unified approach for both surface reconstruction and geometry modeling such as surface completion.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Approximation</subject><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>Construction</subject><subject>Data Structures and Information Theory</subject><subject>Geometry</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Partitions</subject><subject>Projection</subject><subject>R&D</subject><subject>Reconstruction</subject><subject>Research & development</subject><subject>Software Engineering</subject><subject>Spheres</subject><subject>Studies</subject><subject>Theory of Computation</subject><subject>Topological manifolds</subject><subject>Unity</subject><issn>1000-9000</issn><issn>1860-4749</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kE9LAzEQxYMoWKsfwNvixVN0JsluNngq4j-oWNCeQ5rNlpTtbk12hX57U1YQBA_zZg6_9xgeIZcINwggbyMiV0ABkSrBFGVHZIJlAVRIoY7TDQBUJTklZzFuALgEISbk7nVoek_n7ss12cKE3ve-a7Ouzpat7_fZrFm7VTDeZovOt3327tIMoTbWxXNyUpsmuoufPSXLx4eP-2c6f3t6uZ_NqeVC9tSiM5IJzhFlXYI0pQXBrGGYdKVQ5bJS3DlT5VbWsuCFqwrhyqJCBAsln5LrMXcXus_BxV5vfbSuaUzruiFqBVLlvGCYyKs_5KYbQpue02UulBKq5AnCEbKhizG4Wu-C35qw1wj6UKYey9SpTH0oU7PkYaMnJrZdu_Ab_L_pG3wQdNk</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Xiao, Chun-Xia</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20110301</creationdate><title>Multi-Level Partition of Unity Algebraic Point Set Surfaces</title><author>Xiao, Chun-Xia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-c1ea72433117f807a8c042ca2142cb91957d93eead5c7f7636ed64e86d110c083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Approximation</topic><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>Construction</topic><topic>Data Structures and Information Theory</topic><topic>Geometry</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Partitions</topic><topic>Projection</topic><topic>R&D</topic><topic>Reconstruction</topic><topic>Research & development</topic><topic>Software Engineering</topic><topic>Spheres</topic><topic>Studies</topic><topic>Theory of Computation</topic><topic>Topological manifolds</topic><topic>Unity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Chun-Xia</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of computer science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Chun-Xia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Level Partition of Unity Algebraic Point Set Surfaces</atitle><jtitle>Journal of computer science and technology</jtitle><stitle>J. Comput. Sci. Technol</stitle><date>2011-03-01</date><risdate>2011</risdate><volume>26</volume><issue>2</issue><spage>229</spage><epage>238</epage><pages>229-238</pages><issn>1000-9000</issn><eissn>1860-4749</eissn><abstract>We present a multi-level partition of unity algebraic set surfaces (MPU-APSS) for surface reconstruction which can be represented by either a projection or in an implicit form. An algebraic point set surface (APSS) defines a smooth surface from a set of unorganized points using local moving least-squares (MLS) fitting of algebraic spheres. However, due to the local nature, APSS does not work well for geometry editing and modeling. Instead, our method builds an implicit approximation function for the scattered point set based on the partition of unity approach. By using an octree subdivision strategy, we first adaptively construct local algebraic spheres for the point set, and then apply weighting functions to blend together these local shape functions. Finally, we compute an error-controlled approximation of the signed distance function from the surface. In addition, we present an efficient projection operator which makes our representation suitable for point set filtering and dynamic point resampling. We demonstrate the effectiveness of our unified approach for both surface reconstruction and geometry modeling such as surface completion.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11390-011-9429-2</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1000-9000 |
ispartof | Journal of computer science and technology, 2011-03, Vol.26 (2), p.229-238 |
issn | 1000-9000 1860-4749 |
language | eng |
recordid | cdi_proquest_miscellaneous_907953621 |
source | ABI/INFORM Global; Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List |
subjects | Algebra Algorithms Analysis Approximation Artificial Intelligence Computer Science Construction Data Structures and Information Theory Geometry Information Systems Applications (incl.Internet) Mathematical analysis Mathematical models Partitions Projection R&D Reconstruction Research & development Software Engineering Spheres Studies Theory of Computation Topological manifolds Unity |
title | Multi-Level Partition of Unity Algebraic Point Set Surfaces |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T23%3A43%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Level%20Partition%20of%20Unity%20Algebraic%20Point%20Set%20Surfaces&rft.jtitle=Journal%20of%20computer%20science%20and%20technology&rft.au=Xiao,%20Chun-Xia&rft.date=2011-03-01&rft.volume=26&rft.issue=2&rft.spage=229&rft.epage=238&rft.pages=229-238&rft.issn=1000-9000&rft.eissn=1860-4749&rft_id=info:doi/10.1007/s11390-011-9429-2&rft_dat=%3Cproquest_cross%3E2282929641%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c347t-c1ea72433117f807a8c042ca2142cb91957d93eead5c7f7636ed64e86d110c083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=854994983&rft_id=info:pmid/&rfr_iscdi=true |