Loading…

Multi-Level Partition of Unity Algebraic Point Set Surfaces

We present a multi-level partition of unity algebraic set surfaces (MPU-APSS) for surface reconstruction which can be represented by either a projection or in an implicit form. An algebraic point set surface (APSS) defines a smooth surface from a set of unorganized points using local moving least-sq...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computer science and technology 2011-03, Vol.26 (2), p.229-238
Main Author: Xiao, Chun-Xia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c347t-c1ea72433117f807a8c042ca2142cb91957d93eead5c7f7636ed64e86d110c083
cites cdi_FETCH-LOGICAL-c347t-c1ea72433117f807a8c042ca2142cb91957d93eead5c7f7636ed64e86d110c083
container_end_page 238
container_issue 2
container_start_page 229
container_title Journal of computer science and technology
container_volume 26
creator Xiao, Chun-Xia
description We present a multi-level partition of unity algebraic set surfaces (MPU-APSS) for surface reconstruction which can be represented by either a projection or in an implicit form. An algebraic point set surface (APSS) defines a smooth surface from a set of unorganized points using local moving least-squares (MLS) fitting of algebraic spheres. However, due to the local nature, APSS does not work well for geometry editing and modeling. Instead, our method builds an implicit approximation function for the scattered point set based on the partition of unity approach. By using an octree subdivision strategy, we first adaptively construct local algebraic spheres for the point set, and then apply weighting functions to blend together these local shape functions. Finally, we compute an error-controlled approximation of the signed distance function from the surface. In addition, we present an efficient projection operator which makes our representation suitable for point set filtering and dynamic point resampling. We demonstrate the effectiveness of our unified approach for both surface reconstruction and geometry modeling such as surface completion.
doi_str_mv 10.1007/s11390-011-9429-2
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_907953621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2282929641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-c1ea72433117f807a8c042ca2142cb91957d93eead5c7f7636ed64e86d110c083</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwNvixVN0JsluNngq4j-oWNCeQ5rNlpTtbk12hX57U1YQBA_zZg6_9xgeIZcINwggbyMiV0ABkSrBFGVHZIJlAVRIoY7TDQBUJTklZzFuALgEISbk7nVoek_n7ss12cKE3ve-a7Ouzpat7_fZrFm7VTDeZovOt3327tIMoTbWxXNyUpsmuoufPSXLx4eP-2c6f3t6uZ_NqeVC9tSiM5IJzhFlXYI0pQXBrGGYdKVQ5bJS3DlT5VbWsuCFqwrhyqJCBAsln5LrMXcXus_BxV5vfbSuaUzruiFqBVLlvGCYyKs_5KYbQpue02UulBKq5AnCEbKhizG4Wu-C35qw1wj6UKYey9SpTH0oU7PkYaMnJrZdu_Ab_L_pG3wQdNk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>854994983</pqid></control><display><type>article</type><title>Multi-Level Partition of Unity Algebraic Point Set Surfaces</title><source>ABI/INFORM Global</source><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Xiao, Chun-Xia</creator><creatorcontrib>Xiao, Chun-Xia</creatorcontrib><description>We present a multi-level partition of unity algebraic set surfaces (MPU-APSS) for surface reconstruction which can be represented by either a projection or in an implicit form. An algebraic point set surface (APSS) defines a smooth surface from a set of unorganized points using local moving least-squares (MLS) fitting of algebraic spheres. However, due to the local nature, APSS does not work well for geometry editing and modeling. Instead, our method builds an implicit approximation function for the scattered point set based on the partition of unity approach. By using an octree subdivision strategy, we first adaptively construct local algebraic spheres for the point set, and then apply weighting functions to blend together these local shape functions. Finally, we compute an error-controlled approximation of the signed distance function from the surface. In addition, we present an efficient projection operator which makes our representation suitable for point set filtering and dynamic point resampling. We demonstrate the effectiveness of our unified approach for both surface reconstruction and geometry modeling such as surface completion.</description><identifier>ISSN: 1000-9000</identifier><identifier>EISSN: 1860-4749</identifier><identifier>DOI: 10.1007/s11390-011-9429-2</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algebra ; Algorithms ; Analysis ; Approximation ; Artificial Intelligence ; Computer Science ; Construction ; Data Structures and Information Theory ; Geometry ; Information Systems Applications (incl.Internet) ; Mathematical analysis ; Mathematical models ; Partitions ; Projection ; R&amp;D ; Reconstruction ; Research &amp; development ; Software Engineering ; Spheres ; Studies ; Theory of Computation ; Topological manifolds ; Unity</subject><ispartof>Journal of computer science and technology, 2011-03, Vol.26 (2), p.229-238</ispartof><rights>Springer 2011</rights><rights>Springer 2011.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-c1ea72433117f807a8c042ca2142cb91957d93eead5c7f7636ed64e86d110c083</citedby><cites>FETCH-LOGICAL-c347t-c1ea72433117f807a8c042ca2142cb91957d93eead5c7f7636ed64e86d110c083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/854994983?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11667,27901,27902,36037,36038,44339</link.rule.ids></links><search><creatorcontrib>Xiao, Chun-Xia</creatorcontrib><title>Multi-Level Partition of Unity Algebraic Point Set Surfaces</title><title>Journal of computer science and technology</title><addtitle>J. Comput. Sci. Technol</addtitle><description>We present a multi-level partition of unity algebraic set surfaces (MPU-APSS) for surface reconstruction which can be represented by either a projection or in an implicit form. An algebraic point set surface (APSS) defines a smooth surface from a set of unorganized points using local moving least-squares (MLS) fitting of algebraic spheres. However, due to the local nature, APSS does not work well for geometry editing and modeling. Instead, our method builds an implicit approximation function for the scattered point set based on the partition of unity approach. By using an octree subdivision strategy, we first adaptively construct local algebraic spheres for the point set, and then apply weighting functions to blend together these local shape functions. Finally, we compute an error-controlled approximation of the signed distance function from the surface. In addition, we present an efficient projection operator which makes our representation suitable for point set filtering and dynamic point resampling. We demonstrate the effectiveness of our unified approach for both surface reconstruction and geometry modeling such as surface completion.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Approximation</subject><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>Construction</subject><subject>Data Structures and Information Theory</subject><subject>Geometry</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Partitions</subject><subject>Projection</subject><subject>R&amp;D</subject><subject>Reconstruction</subject><subject>Research &amp; development</subject><subject>Software Engineering</subject><subject>Spheres</subject><subject>Studies</subject><subject>Theory of Computation</subject><subject>Topological manifolds</subject><subject>Unity</subject><issn>1000-9000</issn><issn>1860-4749</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kE9LAzEQxYMoWKsfwNvixVN0JsluNngq4j-oWNCeQ5rNlpTtbk12hX57U1YQBA_zZg6_9xgeIZcINwggbyMiV0ABkSrBFGVHZIJlAVRIoY7TDQBUJTklZzFuALgEISbk7nVoek_n7ss12cKE3ve-a7Ouzpat7_fZrFm7VTDeZovOt3327tIMoTbWxXNyUpsmuoufPSXLx4eP-2c6f3t6uZ_NqeVC9tSiM5IJzhFlXYI0pQXBrGGYdKVQ5bJS3DlT5VbWsuCFqwrhyqJCBAsln5LrMXcXus_BxV5vfbSuaUzruiFqBVLlvGCYyKs_5KYbQpue02UulBKq5AnCEbKhizG4Wu-C35qw1wj6UKYey9SpTH0oU7PkYaMnJrZdu_Ab_L_pG3wQdNk</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Xiao, Chun-Xia</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20110301</creationdate><title>Multi-Level Partition of Unity Algebraic Point Set Surfaces</title><author>Xiao, Chun-Xia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-c1ea72433117f807a8c042ca2142cb91957d93eead5c7f7636ed64e86d110c083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Approximation</topic><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>Construction</topic><topic>Data Structures and Information Theory</topic><topic>Geometry</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Partitions</topic><topic>Projection</topic><topic>R&amp;D</topic><topic>Reconstruction</topic><topic>Research &amp; development</topic><topic>Software Engineering</topic><topic>Spheres</topic><topic>Studies</topic><topic>Theory of Computation</topic><topic>Topological manifolds</topic><topic>Unity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Chun-Xia</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of computer science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Chun-Xia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Level Partition of Unity Algebraic Point Set Surfaces</atitle><jtitle>Journal of computer science and technology</jtitle><stitle>J. Comput. Sci. Technol</stitle><date>2011-03-01</date><risdate>2011</risdate><volume>26</volume><issue>2</issue><spage>229</spage><epage>238</epage><pages>229-238</pages><issn>1000-9000</issn><eissn>1860-4749</eissn><abstract>We present a multi-level partition of unity algebraic set surfaces (MPU-APSS) for surface reconstruction which can be represented by either a projection or in an implicit form. An algebraic point set surface (APSS) defines a smooth surface from a set of unorganized points using local moving least-squares (MLS) fitting of algebraic spheres. However, due to the local nature, APSS does not work well for geometry editing and modeling. Instead, our method builds an implicit approximation function for the scattered point set based on the partition of unity approach. By using an octree subdivision strategy, we first adaptively construct local algebraic spheres for the point set, and then apply weighting functions to blend together these local shape functions. Finally, we compute an error-controlled approximation of the signed distance function from the surface. In addition, we present an efficient projection operator which makes our representation suitable for point set filtering and dynamic point resampling. We demonstrate the effectiveness of our unified approach for both surface reconstruction and geometry modeling such as surface completion.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11390-011-9429-2</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1000-9000
ispartof Journal of computer science and technology, 2011-03, Vol.26 (2), p.229-238
issn 1000-9000
1860-4749
language eng
recordid cdi_proquest_miscellaneous_907953621
source ABI/INFORM Global; Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List
subjects Algebra
Algorithms
Analysis
Approximation
Artificial Intelligence
Computer Science
Construction
Data Structures and Information Theory
Geometry
Information Systems Applications (incl.Internet)
Mathematical analysis
Mathematical models
Partitions
Projection
R&D
Reconstruction
Research & development
Software Engineering
Spheres
Studies
Theory of Computation
Topological manifolds
Unity
title Multi-Level Partition of Unity Algebraic Point Set Surfaces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T23%3A43%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Level%20Partition%20of%20Unity%20Algebraic%20Point%20Set%20Surfaces&rft.jtitle=Journal%20of%20computer%20science%20and%20technology&rft.au=Xiao,%20Chun-Xia&rft.date=2011-03-01&rft.volume=26&rft.issue=2&rft.spage=229&rft.epage=238&rft.pages=229-238&rft.issn=1000-9000&rft.eissn=1860-4749&rft_id=info:doi/10.1007/s11390-011-9429-2&rft_dat=%3Cproquest_cross%3E2282929641%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c347t-c1ea72433117f807a8c042ca2142cb91957d93eead5c7f7636ed64e86d110c083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=854994983&rft_id=info:pmid/&rfr_iscdi=true