Loading…
Fabrication and modeling of high-frequency PZT composite thick film membrance resonators
High-frequency, thickness mode resonators were fabricated using a 7 /spl mu/m piezoelectric transducer (PZT) thick film that was produced using a modified composite ceramic sol-gel process. Initial studies dealt with the integration of the PZT thick film onto the substrate. Zirconium oxide (ZrO/sub...
Saved in:
Published in: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2004-10, Vol.51 (10), p.1255-1261 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | High-frequency, thickness mode resonators were fabricated using a 7 /spl mu/m piezoelectric transducer (PZT) thick film that was produced using a modified composite ceramic sol-gel process. Initial studies dealt with the integration of the PZT thick film onto the substrate. Zirconium oxide (ZrO/sub 2/) was selected as a diffusion barrier layer and gave good results when used in conjunction with silicon oxide (SiO/sub 2/) as an etch stop layer. Using these conditions, devices were produced and the acoustic properties measured and modeled. The resonators showed a resonant frequency of about 200 MHz, an effective electromechanical coupling coefficient of 0.34, and a Q factor of 22. Modeling was based on a Mason-type model that gave good agreement between the experimental data and the simulations. The latter showed, for the PZT thick film, an electromechanical coupling coefficient of 0.35, a stiffness of 8.65/sup */10/sup 10/ N.m/sup -2/ and an e/sub 33/,/sub f/ Piezoelectric coefficient of 9 cm/sup -2/. |
---|---|
ISSN: | 0885-3010 1525-8955 |
DOI: | 10.1109/TUFFC.2004.1350953 |