Loading…

Building user argumentative models

Knowing how a user builds his/her arguments during a discussion gives useful advantages if we want to assist the user or analyse his/her argumentative skills. This paper presents a novel mechanism to build user argumentative models, which captures the argumentative style to generate arguments. To th...

Full description

Saved in:
Bibliographic Details
Published in:Applied intelligence (Dordrecht, Netherlands) Netherlands), 2010-02, Vol.32 (1), p.131-145
Main Authors: Monteserin, Ariel, Amandi, Analía
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c347t-12922e19528a620b70e2fe970a83ef662eaf43bb3045b902ad037327dce937bb3
cites cdi_FETCH-LOGICAL-c347t-12922e19528a620b70e2fe970a83ef662eaf43bb3045b902ad037327dce937bb3
container_end_page 145
container_issue 1
container_start_page 131
container_title Applied intelligence (Dordrecht, Netherlands)
container_volume 32
creator Monteserin, Ariel
Amandi, Analía
description Knowing how a user builds his/her arguments during a discussion gives useful advantages if we want to assist the user or analyse his/her argumentative skills. This paper presents a novel mechanism to build user argumentative models, which captures the argumentative style to generate arguments. To this end, we observe how users generate arguments, and apply a generalised association rules algorithm to discover rules for argument generation. These rules depict the argumentative style of the user. They are composed of an antecedent, which represents the conditions to build an argument, and a consequent, which represents such argument. To evaluate this proposal, we show results obtained in the domain of meeting scheduling. We discovered interesting rules from a group of users discussing in that domain, and checked that about 60% of the arguments that users had generated in a test situation can be also generated from the rules previously learnt, at least partially. Finally, although this work focuses on modelling users’ argumentative style, we discuss how this promising approach could be applied in different knowledge domains.
doi_str_mv 10.1007/s10489-008-0139-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_907981901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2376364871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-12922e19528a620b70e2fe970a83ef662eaf43bb3045b902ad037327dce937bb3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMoWFd_gLeyF0_RSdLm46iLX7DgRcFbSNtp6dKPNWkF_71ZKgiCp4HheV9mHkIuGVwzAHUTGGTaUABNgQlD5RFJWK4EVZlRxyQBwzMqpXk_JWch7ABACGAJWd_NbVe1Q5POAX3qfDP3OExuaj8x7ccKu3BOTmrXBbz4mSvy9nD_unmi25fH583tlpYiUxNl3HCOzORcO8mhUIC8RqPAaYG1lBxdnYmiEJDlhQHuKhBKcFWVaISK-xW5Wnr3fvyYMUy2b0OJXecGHOdgDSijmYnvrcj6D7kbZz_E46xWHDTLmY4QW6DSjyF4rO3et73zX5aBPTizizMbndmDMytjhi-ZENmhQf9b_H_oG2x-bJ4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>872081518</pqid></control><display><type>article</type><title>Building user argumentative models</title><source>ABI/INFORM Collection</source><source>Springer Nature</source><creator>Monteserin, Ariel ; Amandi, Analía</creator><creatorcontrib>Monteserin, Ariel ; Amandi, Analía</creatorcontrib><description>Knowing how a user builds his/her arguments during a discussion gives useful advantages if we want to assist the user or analyse his/her argumentative skills. This paper presents a novel mechanism to build user argumentative models, which captures the argumentative style to generate arguments. To this end, we observe how users generate arguments, and apply a generalised association rules algorithm to discover rules for argument generation. These rules depict the argumentative style of the user. They are composed of an antecedent, which represents the conditions to build an argument, and a consequent, which represents such argument. To evaluate this proposal, we show results obtained in the domain of meeting scheduling. We discovered interesting rules from a group of users discussing in that domain, and checked that about 60% of the arguments that users had generated in a test situation can be also generated from the rules previously learnt, at least partially. Finally, although this work focuses on modelling users’ argumentative style, we discuss how this promising approach could be applied in different knowledge domains.</description><identifier>ISSN: 0924-669X</identifier><identifier>EISSN: 1573-7497</identifier><identifier>DOI: 10.1007/s10489-008-0139-6</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algorithms ; Artificial Intelligence ; Computer Science ; Construction ; Intelligence ; Machines ; Manufacturing ; Mechanical Engineering ; Meetings ; Processes ; Proposals ; Scheduling ; Skills ; Taxonomy</subject><ispartof>Applied intelligence (Dordrecht, Netherlands), 2010-02, Vol.32 (1), p.131-145</ispartof><rights>Springer Science+Business Media, LLC 2008</rights><rights>Springer Science+Business Media, LLC 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-12922e19528a620b70e2fe970a83ef662eaf43bb3045b902ad037327dce937bb3</citedby><cites>FETCH-LOGICAL-c347t-12922e19528a620b70e2fe970a83ef662eaf43bb3045b902ad037327dce937bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/872081518/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/872081518?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,36061,44363,74895</link.rule.ids></links><search><creatorcontrib>Monteserin, Ariel</creatorcontrib><creatorcontrib>Amandi, Analía</creatorcontrib><title>Building user argumentative models</title><title>Applied intelligence (Dordrecht, Netherlands)</title><addtitle>Appl Intell</addtitle><description>Knowing how a user builds his/her arguments during a discussion gives useful advantages if we want to assist the user or analyse his/her argumentative skills. This paper presents a novel mechanism to build user argumentative models, which captures the argumentative style to generate arguments. To this end, we observe how users generate arguments, and apply a generalised association rules algorithm to discover rules for argument generation. These rules depict the argumentative style of the user. They are composed of an antecedent, which represents the conditions to build an argument, and a consequent, which represents such argument. To evaluate this proposal, we show results obtained in the domain of meeting scheduling. We discovered interesting rules from a group of users discussing in that domain, and checked that about 60% of the arguments that users had generated in a test situation can be also generated from the rules previously learnt, at least partially. Finally, although this work focuses on modelling users’ argumentative style, we discuss how this promising approach could be applied in different knowledge domains.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>Construction</subject><subject>Intelligence</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Mechanical Engineering</subject><subject>Meetings</subject><subject>Processes</subject><subject>Proposals</subject><subject>Scheduling</subject><subject>Skills</subject><subject>Taxonomy</subject><issn>0924-669X</issn><issn>1573-7497</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kE1LxDAQhoMoWFd_gLeyF0_RSdLm46iLX7DgRcFbSNtp6dKPNWkF_71ZKgiCp4HheV9mHkIuGVwzAHUTGGTaUABNgQlD5RFJWK4EVZlRxyQBwzMqpXk_JWch7ABACGAJWd_NbVe1Q5POAX3qfDP3OExuaj8x7ccKu3BOTmrXBbz4mSvy9nD_unmi25fH583tlpYiUxNl3HCOzORcO8mhUIC8RqPAaYG1lBxdnYmiEJDlhQHuKhBKcFWVaISK-xW5Wnr3fvyYMUy2b0OJXecGHOdgDSijmYnvrcj6D7kbZz_E46xWHDTLmY4QW6DSjyF4rO3et73zX5aBPTizizMbndmDMytjhi-ZENmhQf9b_H_oG2x-bJ4</recordid><startdate>20100201</startdate><enddate>20100201</enddate><creator>Monteserin, Ariel</creator><creator>Amandi, Analía</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20100201</creationdate><title>Building user argumentative models</title><author>Monteserin, Ariel ; Amandi, Analía</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-12922e19528a620b70e2fe970a83ef662eaf43bb3045b902ad037327dce937bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>Construction</topic><topic>Intelligence</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Mechanical Engineering</topic><topic>Meetings</topic><topic>Processes</topic><topic>Proposals</topic><topic>Scheduling</topic><topic>Skills</topic><topic>Taxonomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Monteserin, Ariel</creatorcontrib><creatorcontrib>Amandi, Analía</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer science database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Monteserin, Ariel</au><au>Amandi, Analía</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Building user argumentative models</atitle><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle><stitle>Appl Intell</stitle><date>2010-02-01</date><risdate>2010</risdate><volume>32</volume><issue>1</issue><spage>131</spage><epage>145</epage><pages>131-145</pages><issn>0924-669X</issn><eissn>1573-7497</eissn><abstract>Knowing how a user builds his/her arguments during a discussion gives useful advantages if we want to assist the user or analyse his/her argumentative skills. This paper presents a novel mechanism to build user argumentative models, which captures the argumentative style to generate arguments. To this end, we observe how users generate arguments, and apply a generalised association rules algorithm to discover rules for argument generation. These rules depict the argumentative style of the user. They are composed of an antecedent, which represents the conditions to build an argument, and a consequent, which represents such argument. To evaluate this proposal, we show results obtained in the domain of meeting scheduling. We discovered interesting rules from a group of users discussing in that domain, and checked that about 60% of the arguments that users had generated in a test situation can be also generated from the rules previously learnt, at least partially. Finally, although this work focuses on modelling users’ argumentative style, we discuss how this promising approach could be applied in different knowledge domains.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10489-008-0139-6</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-669X
ispartof Applied intelligence (Dordrecht, Netherlands), 2010-02, Vol.32 (1), p.131-145
issn 0924-669X
1573-7497
language eng
recordid cdi_proquest_miscellaneous_907981901
source ABI/INFORM Collection; Springer Nature
subjects Algorithms
Artificial Intelligence
Computer Science
Construction
Intelligence
Machines
Manufacturing
Mechanical Engineering
Meetings
Processes
Proposals
Scheduling
Skills
Taxonomy
title Building user argumentative models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A35%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Building%20user%20argumentative%20models&rft.jtitle=Applied%20intelligence%20(Dordrecht,%20Netherlands)&rft.au=Monteserin,%20Ariel&rft.date=2010-02-01&rft.volume=32&rft.issue=1&rft.spage=131&rft.epage=145&rft.pages=131-145&rft.issn=0924-669X&rft.eissn=1573-7497&rft_id=info:doi/10.1007/s10489-008-0139-6&rft_dat=%3Cproquest_cross%3E2376364871%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c347t-12922e19528a620b70e2fe970a83ef662eaf43bb3045b902ad037327dce937bb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=872081518&rft_id=info:pmid/&rfr_iscdi=true