Loading…
Building user argumentative models
Knowing how a user builds his/her arguments during a discussion gives useful advantages if we want to assist the user or analyse his/her argumentative skills. This paper presents a novel mechanism to build user argumentative models, which captures the argumentative style to generate arguments. To th...
Saved in:
Published in: | Applied intelligence (Dordrecht, Netherlands) Netherlands), 2010-02, Vol.32 (1), p.131-145 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c347t-12922e19528a620b70e2fe970a83ef662eaf43bb3045b902ad037327dce937bb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c347t-12922e19528a620b70e2fe970a83ef662eaf43bb3045b902ad037327dce937bb3 |
container_end_page | 145 |
container_issue | 1 |
container_start_page | 131 |
container_title | Applied intelligence (Dordrecht, Netherlands) |
container_volume | 32 |
creator | Monteserin, Ariel Amandi, Analía |
description | Knowing how a user builds his/her arguments during a discussion gives useful advantages if we want to assist the user or analyse his/her argumentative skills. This paper presents a novel mechanism to build user argumentative models, which captures the argumentative style to generate arguments. To this end, we observe how users generate arguments, and apply a generalised association rules algorithm to discover rules for argument generation. These rules depict the argumentative style of the user. They are composed of an antecedent, which represents the conditions to build an argument, and a consequent, which represents such argument. To evaluate this proposal, we show results obtained in the domain of meeting scheduling. We discovered interesting rules from a group of users discussing in that domain, and checked that about 60% of the arguments that users had generated in a test situation can be also generated from the rules previously learnt, at least partially. Finally, although this work focuses on modelling users’ argumentative style, we discuss how this promising approach could be applied in different knowledge domains. |
doi_str_mv | 10.1007/s10489-008-0139-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_907981901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2376364871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-12922e19528a620b70e2fe970a83ef662eaf43bb3045b902ad037327dce937bb3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMoWFd_gLeyF0_RSdLm46iLX7DgRcFbSNtp6dKPNWkF_71ZKgiCp4HheV9mHkIuGVwzAHUTGGTaUABNgQlD5RFJWK4EVZlRxyQBwzMqpXk_JWch7ABACGAJWd_NbVe1Q5POAX3qfDP3OExuaj8x7ccKu3BOTmrXBbz4mSvy9nD_unmi25fH583tlpYiUxNl3HCOzORcO8mhUIC8RqPAaYG1lBxdnYmiEJDlhQHuKhBKcFWVaISK-xW5Wnr3fvyYMUy2b0OJXecGHOdgDSijmYnvrcj6D7kbZz_E46xWHDTLmY4QW6DSjyF4rO3et73zX5aBPTizizMbndmDMytjhi-ZENmhQf9b_H_oG2x-bJ4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>872081518</pqid></control><display><type>article</type><title>Building user argumentative models</title><source>ABI/INFORM Collection</source><source>Springer Nature</source><creator>Monteserin, Ariel ; Amandi, Analía</creator><creatorcontrib>Monteserin, Ariel ; Amandi, Analía</creatorcontrib><description>Knowing how a user builds his/her arguments during a discussion gives useful advantages if we want to assist the user or analyse his/her argumentative skills. This paper presents a novel mechanism to build user argumentative models, which captures the argumentative style to generate arguments. To this end, we observe how users generate arguments, and apply a generalised association rules algorithm to discover rules for argument generation. These rules depict the argumentative style of the user. They are composed of an antecedent, which represents the conditions to build an argument, and a consequent, which represents such argument. To evaluate this proposal, we show results obtained in the domain of meeting scheduling. We discovered interesting rules from a group of users discussing in that domain, and checked that about 60% of the arguments that users had generated in a test situation can be also generated from the rules previously learnt, at least partially. Finally, although this work focuses on modelling users’ argumentative style, we discuss how this promising approach could be applied in different knowledge domains.</description><identifier>ISSN: 0924-669X</identifier><identifier>EISSN: 1573-7497</identifier><identifier>DOI: 10.1007/s10489-008-0139-6</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algorithms ; Artificial Intelligence ; Computer Science ; Construction ; Intelligence ; Machines ; Manufacturing ; Mechanical Engineering ; Meetings ; Processes ; Proposals ; Scheduling ; Skills ; Taxonomy</subject><ispartof>Applied intelligence (Dordrecht, Netherlands), 2010-02, Vol.32 (1), p.131-145</ispartof><rights>Springer Science+Business Media, LLC 2008</rights><rights>Springer Science+Business Media, LLC 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-12922e19528a620b70e2fe970a83ef662eaf43bb3045b902ad037327dce937bb3</citedby><cites>FETCH-LOGICAL-c347t-12922e19528a620b70e2fe970a83ef662eaf43bb3045b902ad037327dce937bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/872081518/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/872081518?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,36061,44363,74895</link.rule.ids></links><search><creatorcontrib>Monteserin, Ariel</creatorcontrib><creatorcontrib>Amandi, Analía</creatorcontrib><title>Building user argumentative models</title><title>Applied intelligence (Dordrecht, Netherlands)</title><addtitle>Appl Intell</addtitle><description>Knowing how a user builds his/her arguments during a discussion gives useful advantages if we want to assist the user or analyse his/her argumentative skills. This paper presents a novel mechanism to build user argumentative models, which captures the argumentative style to generate arguments. To this end, we observe how users generate arguments, and apply a generalised association rules algorithm to discover rules for argument generation. These rules depict the argumentative style of the user. They are composed of an antecedent, which represents the conditions to build an argument, and a consequent, which represents such argument. To evaluate this proposal, we show results obtained in the domain of meeting scheduling. We discovered interesting rules from a group of users discussing in that domain, and checked that about 60% of the arguments that users had generated in a test situation can be also generated from the rules previously learnt, at least partially. Finally, although this work focuses on modelling users’ argumentative style, we discuss how this promising approach could be applied in different knowledge domains.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>Construction</subject><subject>Intelligence</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Mechanical Engineering</subject><subject>Meetings</subject><subject>Processes</subject><subject>Proposals</subject><subject>Scheduling</subject><subject>Skills</subject><subject>Taxonomy</subject><issn>0924-669X</issn><issn>1573-7497</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kE1LxDAQhoMoWFd_gLeyF0_RSdLm46iLX7DgRcFbSNtp6dKPNWkF_71ZKgiCp4HheV9mHkIuGVwzAHUTGGTaUABNgQlD5RFJWK4EVZlRxyQBwzMqpXk_JWch7ABACGAJWd_NbVe1Q5POAX3qfDP3OExuaj8x7ccKu3BOTmrXBbz4mSvy9nD_unmi25fH583tlpYiUxNl3HCOzORcO8mhUIC8RqPAaYG1lBxdnYmiEJDlhQHuKhBKcFWVaISK-xW5Wnr3fvyYMUy2b0OJXecGHOdgDSijmYnvrcj6D7kbZz_E46xWHDTLmY4QW6DSjyF4rO3et73zX5aBPTizizMbndmDMytjhi-ZENmhQf9b_H_oG2x-bJ4</recordid><startdate>20100201</startdate><enddate>20100201</enddate><creator>Monteserin, Ariel</creator><creator>Amandi, Analía</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20100201</creationdate><title>Building user argumentative models</title><author>Monteserin, Ariel ; Amandi, Analía</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-12922e19528a620b70e2fe970a83ef662eaf43bb3045b902ad037327dce937bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>Construction</topic><topic>Intelligence</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Mechanical Engineering</topic><topic>Meetings</topic><topic>Processes</topic><topic>Proposals</topic><topic>Scheduling</topic><topic>Skills</topic><topic>Taxonomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Monteserin, Ariel</creatorcontrib><creatorcontrib>Amandi, Analía</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer science database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Monteserin, Ariel</au><au>Amandi, Analía</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Building user argumentative models</atitle><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle><stitle>Appl Intell</stitle><date>2010-02-01</date><risdate>2010</risdate><volume>32</volume><issue>1</issue><spage>131</spage><epage>145</epage><pages>131-145</pages><issn>0924-669X</issn><eissn>1573-7497</eissn><abstract>Knowing how a user builds his/her arguments during a discussion gives useful advantages if we want to assist the user or analyse his/her argumentative skills. This paper presents a novel mechanism to build user argumentative models, which captures the argumentative style to generate arguments. To this end, we observe how users generate arguments, and apply a generalised association rules algorithm to discover rules for argument generation. These rules depict the argumentative style of the user. They are composed of an antecedent, which represents the conditions to build an argument, and a consequent, which represents such argument. To evaluate this proposal, we show results obtained in the domain of meeting scheduling. We discovered interesting rules from a group of users discussing in that domain, and checked that about 60% of the arguments that users had generated in a test situation can be also generated from the rules previously learnt, at least partially. Finally, although this work focuses on modelling users’ argumentative style, we discuss how this promising approach could be applied in different knowledge domains.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10489-008-0139-6</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-669X |
ispartof | Applied intelligence (Dordrecht, Netherlands), 2010-02, Vol.32 (1), p.131-145 |
issn | 0924-669X 1573-7497 |
language | eng |
recordid | cdi_proquest_miscellaneous_907981901 |
source | ABI/INFORM Collection; Springer Nature |
subjects | Algorithms Artificial Intelligence Computer Science Construction Intelligence Machines Manufacturing Mechanical Engineering Meetings Processes Proposals Scheduling Skills Taxonomy |
title | Building user argumentative models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A35%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Building%20user%20argumentative%20models&rft.jtitle=Applied%20intelligence%20(Dordrecht,%20Netherlands)&rft.au=Monteserin,%20Ariel&rft.date=2010-02-01&rft.volume=32&rft.issue=1&rft.spage=131&rft.epage=145&rft.pages=131-145&rft.issn=0924-669X&rft.eissn=1573-7497&rft_id=info:doi/10.1007/s10489-008-0139-6&rft_dat=%3Cproquest_cross%3E2376364871%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c347t-12922e19528a620b70e2fe970a83ef662eaf43bb3045b902ad037327dce937bb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=872081518&rft_id=info:pmid/&rfr_iscdi=true |