Loading…

Neural Network Solution for Forward Kinematics Problem of Cable Robots

Forward kinematics problem of cable robots is very difficult to solve the same as that of parallel robots and in the contrary to the serial manipulators’. This problem is almost impossible to solve analytically because of the nonlinearity and complexity of the robot’s kinematic equations. Numerical...

Full description

Saved in:
Bibliographic Details
Published in:Journal of intelligent & robotic systems 2010-11, Vol.60 (2), p.201-215
Main Authors: Ghasemi, Ali, Eghtesad, Mohammad, Farid, Mehrdad
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Forward kinematics problem of cable robots is very difficult to solve the same as that of parallel robots and in the contrary to the serial manipulators’. This problem is almost impossible to solve analytically because of the nonlinearity and complexity of the robot’s kinematic equations. Numerical methods are the most common solutions for this problem of the parallel and cable robots. But, convergency of these methods is the drawback of using them. In this paper, neural network approach is used to solve the forward kinematics problem of an exemplary 3D cable robot. This problem is solved in the typical workspace of the robot. The neural network used in this paper is of the MLP type and a back propagation procedure is utilized to train the network. A simulation study is performed and the results show the advantages of this method in enhancement of convergency together with very small modeling errors.
ISSN:0921-0296
1573-0409
DOI:10.1007/s10846-010-9421-z