Loading…
Deadlock prevention in a completely decentralized controlled materials flow systems
In this paper, we develop policies to prevent deadlocks in a decentralized modular materials flow. The system consists of locally controlled conveyor units (modules) that can be plugged together in order to flexibly interconnect materials flows within a given production area. The controller of each...
Saved in:
Published in: | Logistics research 2010, Vol.2 (3-4), p.147-158 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we develop policies to prevent deadlocks in a decentralized modular materials flow. The system consists of locally controlled conveyor units (modules) that can be plugged together in order to flexibly interconnect materials flows within a given production area. The controller of each module is a local agent that follows its own specific control rules. The behavior of the overall system is generated as the result of the interaction of the modules. The findings in this paper are based on the dissertation research by Dr. Stephan Mayer (Development of a completely decentralized control system for modular continuous conveyors. Dissertation, Universitätsverlag Karlsruhe, 2009), which provides a comprehensive description of the development of decentralized control policies for in-plant continuous materials flow systems. |
---|---|
ISSN: | 1865-035X 1865-0368 |
DOI: | 10.1007/s12159-010-0035-4 |