Loading…

Determining histology-MRI slice correspondences for defining MRI-based disease signatures of prostate cancer

Abstract Mapping the spatial disease extent in a certain anatomical organ/tissue from histology images to radiological images is important in defining the disease signature in the radiological images. One such scenario is in the context of men with prostate cancer who have had pre-operative magnetic...

Full description

Saved in:
Bibliographic Details
Published in:Computerized medical imaging and graphics 2011-10, Vol.35 (7), p.568-578
Main Authors: Xiao, Gaoyu, Bloch, B. Nicolas, Chappelow, Jonathan, Genega, Elizabeth M, Rofsky, Neil M, Lenkinski, Robert E, Tomaszewski, John, Feldman, Michael D, Rosen, Mark, Madabhushi, Anant
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Mapping the spatial disease extent in a certain anatomical organ/tissue from histology images to radiological images is important in defining the disease signature in the radiological images. One such scenario is in the context of men with prostate cancer who have had pre-operative magnetic resonance imaging (MRI) before radical prostatectomy. For these cases, the prostate cancer extent from ex vivo whole-mount histology is to be mapped to in vivo MRI. The need for determining radiology-image-based disease signatures is important for (a) training radiologist residents and (b) for constructing an MRI-based computer aided diagnosis (CAD) system for disease detection in vivo . However, a prerequisite for this data mapping is the determination of slice correspondences (i.e. indices of each pair of corresponding image slices) between histological and magnetic resonance images. The explicit determination of such slice correspondences is especially indispensable when an accurate 3D reconstruction of the histological volume cannot be achieved because of (a) the limited tissue slices with unknown inter-slice spacing, and (b) obvious histological image artifacts (tissue loss or distortion). In the clinic practice, the histology-MRI slice correspondences are often determined visually by experienced radiologists and pathologists working in unison, but this procedure is laborious and time-consuming. We present an iterative method to automatically determine slice correspondence between images from histology and MRI via a group-wise comparison scheme, followed by 2D and 3D registration. The image slice correspondences obtained using our method were compared with the ground truth correspondences determined via consensus of multiple experts over a total of 23 patient studies. In most instances, the results of our method were very close to the results obtained via visual inspection by these experts.
ISSN:0895-6111
1879-0771
DOI:10.1016/j.compmedimag.2010.12.003