Loading…

Anisotropic Thermal Conductivity Model for Dry Snow

Fabric tensors quantify the directional arrangement of a granular material's microstructure. In treating snow as such they are beneficial in characterizing morphologies that exhibit a distinct directional arrangement—like chains of grains in depth hoar and potentially other weak layers. Microst...

Full description

Saved in:
Bibliographic Details
Published in:Cold regions science and technology 2011-12, Vol.69 (2), p.122-128
Main Authors: Shertzer, Richard H., Adams, Edward E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c383t-b8db0d0a14d69c8a867295d4d22cbf0d780e697388f9cce59b31b46fc224f2913
cites cdi_FETCH-LOGICAL-c383t-b8db0d0a14d69c8a867295d4d22cbf0d780e697388f9cce59b31b46fc224f2913
container_end_page 128
container_issue 2
container_start_page 122
container_title Cold regions science and technology
container_volume 69
creator Shertzer, Richard H.
Adams, Edward E.
description Fabric tensors quantify the directional arrangement of a granular material's microstructure. In treating snow as such they are beneficial in characterizing morphologies that exhibit a distinct directional arrangement—like chains of grains in depth hoar and potentially other weak layers. Microstructural variables, including the directional arrangement of bonds, impact thermo-mechanical properties like strength, stiffness, and conductivity of the granular material. The conductivity model proposed here incorporates a fabric tensor, linking the textural arrangement of a granular assembly to a material property. In this work, dry dense snow was subject to temperature gradients (100 and 50 K/m) in a lab. The resulting morphology was driven by temperature gradient metamorphism. Underpinning the importance of microstructure, the observed heat transfer coefficient (EHC) increased in the direction of the applied gradient without appreciable changes in density. Periodic tomography yielded measurable microstructural data used to calculate a fabric tensor and the evolving conductivity tensor. Through the fabric tensor the analytical conduction model accounts for ~ 43% of the observed increase in EHC. The model also calculates a decrease in conductivity in the plane orthogonal to the temperature gradient due to a developing anisotropy. Snow metamorphism models parameterized by density alone cannot predict such directionally-dependent behavior because they are strictly valid for only isotropic materials. ► Snow subject to temperature gradients can exhibit a regular textural arrangement. ► We investigate this potential anisotropy in a morphology similar to depth hoar. ► We quantify the anisotropy with a fabric tensor using stereological techniques. ► The anisotropy was found to be statistically significant in the laboratory samples. ► We propose an analytical model relating the fabric tensor to thermal conductivity.
doi_str_mv 10.1016/j.coldregions.2011.09.005
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_911154095</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165232X1100187X</els_id><sourcerecordid>911154095</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-b8db0d0a14d69c8a867295d4d22cbf0d780e697388f9cce59b31b46fc224f2913</originalsourceid><addsrcrecordid>eNqNkE1LAzEQhoMoWKv_YT2Ip13ztbvJsdRPqHiwgreQnSSast3UZFvpv3dLi3j0NAw8877Mg9AlwQXBpLpZFBBaE-2HD10qKCakwLLAuDxCIyJqmteck2M0Gtgyp4y-n6KzlBZ42GXJRohNOp9CH8PKQzb_tHGp22waOrOG3m98v82eg7Ft5kLMbuM2e-3C9zk6cbpN9uIwx-jt_m4-fcxnLw9P08ksByZYnzfCNNhgTbipJAgtqprK0nBDKTQOm1pgW8maCeEkgC1lw0jDKweUckclYWN0vc9dxfC1tqlXS5_Atq3ubFgnJQkhJcfDH2Mk9yTEkFK0Tq2iX-q4VQSrnSe1UH88qZ0nhaUaPA23V4cWnUC3LuoOfPoNoCXDXJB64KZ7zg4vb7yNKoG3HVjjo4VemeD_0fYDSzmDzQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>911154095</pqid></control><display><type>article</type><title>Anisotropic Thermal Conductivity Model for Dry Snow</title><source>ScienceDirect Journals</source><creator>Shertzer, Richard H. ; Adams, Edward E.</creator><creatorcontrib>Shertzer, Richard H. ; Adams, Edward E.</creatorcontrib><description>Fabric tensors quantify the directional arrangement of a granular material's microstructure. In treating snow as such they are beneficial in characterizing morphologies that exhibit a distinct directional arrangement—like chains of grains in depth hoar and potentially other weak layers. Microstructural variables, including the directional arrangement of bonds, impact thermo-mechanical properties like strength, stiffness, and conductivity of the granular material. The conductivity model proposed here incorporates a fabric tensor, linking the textural arrangement of a granular assembly to a material property. In this work, dry dense snow was subject to temperature gradients (100 and 50 K/m) in a lab. The resulting morphology was driven by temperature gradient metamorphism. Underpinning the importance of microstructure, the observed heat transfer coefficient (EHC) increased in the direction of the applied gradient without appreciable changes in density. Periodic tomography yielded measurable microstructural data used to calculate a fabric tensor and the evolving conductivity tensor. Through the fabric tensor the analytical conduction model accounts for ~ 43% of the observed increase in EHC. The model also calculates a decrease in conductivity in the plane orthogonal to the temperature gradient due to a developing anisotropy. Snow metamorphism models parameterized by density alone cannot predict such directionally-dependent behavior because they are strictly valid for only isotropic materials. ► Snow subject to temperature gradients can exhibit a regular textural arrangement. ► We investigate this potential anisotropy in a morphology similar to depth hoar. ► We quantify the anisotropy with a fabric tensor using stereological techniques. ► The anisotropy was found to be statistically significant in the laboratory samples. ► We propose an analytical model relating the fabric tensor to thermal conductivity.</description><identifier>ISSN: 0165-232X</identifier><identifier>EISSN: 1872-7441</identifier><identifier>DOI: 10.1016/j.coldregions.2011.09.005</identifier><identifier>CODEN: CRSTDL</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Anisotropy ; Conductivity ; Density ; Earth, ocean, space ; Effective properties ; Exact sciences and technology ; External geophysics ; Fabric ; Fabrics ; Mathematical analysis ; Mathematical models ; Metamorphism ; Microstructure ; Snow ; Snow. Ice. Glaciers ; Temperature gradient ; Tensors</subject><ispartof>Cold regions science and technology, 2011-12, Vol.69 (2), p.122-128</ispartof><rights>2011</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-b8db0d0a14d69c8a867295d4d22cbf0d780e697388f9cce59b31b46fc224f2913</citedby><cites>FETCH-LOGICAL-c383t-b8db0d0a14d69c8a867295d4d22cbf0d780e697388f9cce59b31b46fc224f2913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25304817$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Shertzer, Richard H.</creatorcontrib><creatorcontrib>Adams, Edward E.</creatorcontrib><title>Anisotropic Thermal Conductivity Model for Dry Snow</title><title>Cold regions science and technology</title><description>Fabric tensors quantify the directional arrangement of a granular material's microstructure. In treating snow as such they are beneficial in characterizing morphologies that exhibit a distinct directional arrangement—like chains of grains in depth hoar and potentially other weak layers. Microstructural variables, including the directional arrangement of bonds, impact thermo-mechanical properties like strength, stiffness, and conductivity of the granular material. The conductivity model proposed here incorporates a fabric tensor, linking the textural arrangement of a granular assembly to a material property. In this work, dry dense snow was subject to temperature gradients (100 and 50 K/m) in a lab. The resulting morphology was driven by temperature gradient metamorphism. Underpinning the importance of microstructure, the observed heat transfer coefficient (EHC) increased in the direction of the applied gradient without appreciable changes in density. Periodic tomography yielded measurable microstructural data used to calculate a fabric tensor and the evolving conductivity tensor. Through the fabric tensor the analytical conduction model accounts for ~ 43% of the observed increase in EHC. The model also calculates a decrease in conductivity in the plane orthogonal to the temperature gradient due to a developing anisotropy. Snow metamorphism models parameterized by density alone cannot predict such directionally-dependent behavior because they are strictly valid for only isotropic materials. ► Snow subject to temperature gradients can exhibit a regular textural arrangement. ► We investigate this potential anisotropy in a morphology similar to depth hoar. ► We quantify the anisotropy with a fabric tensor using stereological techniques. ► The anisotropy was found to be statistically significant in the laboratory samples. ► We propose an analytical model relating the fabric tensor to thermal conductivity.</description><subject>Anisotropy</subject><subject>Conductivity</subject><subject>Density</subject><subject>Earth, ocean, space</subject><subject>Effective properties</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Fabric</subject><subject>Fabrics</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Metamorphism</subject><subject>Microstructure</subject><subject>Snow</subject><subject>Snow. Ice. Glaciers</subject><subject>Temperature gradient</subject><subject>Tensors</subject><issn>0165-232X</issn><issn>1872-7441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LAzEQhoMoWKv_YT2Ip13ztbvJsdRPqHiwgreQnSSast3UZFvpv3dLi3j0NAw8877Mg9AlwQXBpLpZFBBaE-2HD10qKCakwLLAuDxCIyJqmteck2M0Gtgyp4y-n6KzlBZ42GXJRohNOp9CH8PKQzb_tHGp22waOrOG3m98v82eg7Ft5kLMbuM2e-3C9zk6cbpN9uIwx-jt_m4-fcxnLw9P08ksByZYnzfCNNhgTbipJAgtqprK0nBDKTQOm1pgW8maCeEkgC1lw0jDKweUckclYWN0vc9dxfC1tqlXS5_Atq3ubFgnJQkhJcfDH2Mk9yTEkFK0Tq2iX-q4VQSrnSe1UH88qZ0nhaUaPA23V4cWnUC3LuoOfPoNoCXDXJB64KZ7zg4vb7yNKoG3HVjjo4VemeD_0fYDSzmDzQ</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Shertzer, Richard H.</creator><creator>Adams, Edward E.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20111201</creationdate><title>Anisotropic Thermal Conductivity Model for Dry Snow</title><author>Shertzer, Richard H. ; Adams, Edward E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-b8db0d0a14d69c8a867295d4d22cbf0d780e697388f9cce59b31b46fc224f2913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Anisotropy</topic><topic>Conductivity</topic><topic>Density</topic><topic>Earth, ocean, space</topic><topic>Effective properties</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Fabric</topic><topic>Fabrics</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Metamorphism</topic><topic>Microstructure</topic><topic>Snow</topic><topic>Snow. Ice. Glaciers</topic><topic>Temperature gradient</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shertzer, Richard H.</creatorcontrib><creatorcontrib>Adams, Edward E.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Cold regions science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shertzer, Richard H.</au><au>Adams, Edward E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anisotropic Thermal Conductivity Model for Dry Snow</atitle><jtitle>Cold regions science and technology</jtitle><date>2011-12-01</date><risdate>2011</risdate><volume>69</volume><issue>2</issue><spage>122</spage><epage>128</epage><pages>122-128</pages><issn>0165-232X</issn><eissn>1872-7441</eissn><coden>CRSTDL</coden><abstract>Fabric tensors quantify the directional arrangement of a granular material's microstructure. In treating snow as such they are beneficial in characterizing morphologies that exhibit a distinct directional arrangement—like chains of grains in depth hoar and potentially other weak layers. Microstructural variables, including the directional arrangement of bonds, impact thermo-mechanical properties like strength, stiffness, and conductivity of the granular material. The conductivity model proposed here incorporates a fabric tensor, linking the textural arrangement of a granular assembly to a material property. In this work, dry dense snow was subject to temperature gradients (100 and 50 K/m) in a lab. The resulting morphology was driven by temperature gradient metamorphism. Underpinning the importance of microstructure, the observed heat transfer coefficient (EHC) increased in the direction of the applied gradient without appreciable changes in density. Periodic tomography yielded measurable microstructural data used to calculate a fabric tensor and the evolving conductivity tensor. Through the fabric tensor the analytical conduction model accounts for ~ 43% of the observed increase in EHC. The model also calculates a decrease in conductivity in the plane orthogonal to the temperature gradient due to a developing anisotropy. Snow metamorphism models parameterized by density alone cannot predict such directionally-dependent behavior because they are strictly valid for only isotropic materials. ► Snow subject to temperature gradients can exhibit a regular textural arrangement. ► We investigate this potential anisotropy in a morphology similar to depth hoar. ► We quantify the anisotropy with a fabric tensor using stereological techniques. ► The anisotropy was found to be statistically significant in the laboratory samples. ► We propose an analytical model relating the fabric tensor to thermal conductivity.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.coldregions.2011.09.005</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0165-232X
ispartof Cold regions science and technology, 2011-12, Vol.69 (2), p.122-128
issn 0165-232X
1872-7441
language eng
recordid cdi_proquest_miscellaneous_911154095
source ScienceDirect Journals
subjects Anisotropy
Conductivity
Density
Earth, ocean, space
Effective properties
Exact sciences and technology
External geophysics
Fabric
Fabrics
Mathematical analysis
Mathematical models
Metamorphism
Microstructure
Snow
Snow. Ice. Glaciers
Temperature gradient
Tensors
title Anisotropic Thermal Conductivity Model for Dry Snow
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A45%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anisotropic%20Thermal%20Conductivity%20Model%20for%20Dry%20Snow&rft.jtitle=Cold%20regions%20science%20and%20technology&rft.au=Shertzer,%20Richard%20H.&rft.date=2011-12-01&rft.volume=69&rft.issue=2&rft.spage=122&rft.epage=128&rft.pages=122-128&rft.issn=0165-232X&rft.eissn=1872-7441&rft.coden=CRSTDL&rft_id=info:doi/10.1016/j.coldregions.2011.09.005&rft_dat=%3Cproquest_cross%3E911154095%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-b8db0d0a14d69c8a867295d4d22cbf0d780e697388f9cce59b31b46fc224f2913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=911154095&rft_id=info:pmid/&rfr_iscdi=true