Loading…

Mediator-free electrochemical biosensor based on buckypaper with enhanced stability and sensitivity for glucose detection

Here we report on a novel platform based on buckypaper for the design of high-performance electrochemical biosensors. Using glucose oxidase as a model enzyme, we constructed a biocompatible mediator-free biosensor and studied the potential effect of the buckypaper on the stability of the biosensor w...

Full description

Saved in:
Bibliographic Details
Published in:Biosensors & bioelectronics 2011-12, Vol.30 (1), p.287-293
Main Authors: Ahmadalinezhad, Asieh, Wu, Guosheng, Chen, Aicheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Here we report on a novel platform based on buckypaper for the design of high-performance electrochemical biosensors. Using glucose oxidase as a model enzyme, we constructed a biocompatible mediator-free biosensor and studied the potential effect of the buckypaper on the stability of the biosensor with both amperometry and FTIR spectroscopy. The results showed that the biosensor responses sensitively and selectively to glucose with a considerable functional lifetime of over 80 days. The fabricated enzymatic sensor detects glucose with a dynamic linear range of over 9 mM and a detection limit of 0.01 mM. To examine the efficiency of enzyme immobilization, the Michaelis–Menten constant ( K M app ) was calculated to be 4.67 mM. In addition, the fabricated electrochemical biosensor shows high selectivity; no amperometric response to the common interference species such as ascorbic acid, uric acid and acetamidophenol was observed. The facile and robust buckypaper-based platform proposed in this study opens the door for the design of high-performance electrochemical biosensors for medical diagnostics and environmental monitoring.
ISSN:0956-5663
1873-4235
DOI:10.1016/j.bios.2011.09.030