Loading…

L1cam acts as a modifier gene for members of the endothelin signalling pathway during enteric nervous system development

Background  The enteric nervous system originates from neural crest cells that migrate into the embryonic foregut and then sequentially colonize the midgut and hindgut. Defects in neural crest migration result in regions of the gut that lack enteric ganglia, a condition in humans called Hirschsprung...

Full description

Saved in:
Bibliographic Details
Published in:Neurogastroenterology and motility 2011-11, Vol.23 (11), p.e510-e522
Main Authors: Wallace, A. S., Tan, M. X., Schachner, M., Anderson, R. B.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3512-96db40c68978e8fefce1bf56052b48469b47ee9c75394bb9d5b85773bda7d97d3
cites
container_end_page e522
container_issue 11
container_start_page e510
container_title Neurogastroenterology and motility
container_volume 23
creator Wallace, A. S.
Tan, M. X.
Schachner, M.
Anderson, R. B.
description Background  The enteric nervous system originates from neural crest cells that migrate into the embryonic foregut and then sequentially colonize the midgut and hindgut. Defects in neural crest migration result in regions of the gut that lack enteric ganglia, a condition in humans called Hirschsprung’s disease. The high degree of phenotypic variability reported in Hirschsprung’s disease suggests the involvement of modifier genes. Methods  We used a two‐locus complementation approach to screen for genetic interactions between L1cam and members of the endothelin signalling pathway. Immunohistochemistry was used to label PGP9.5+ enteric neurons and Sox10+ neural crest‐derived cells in wholemount preparations of embryonic gut. Key Results  Loss or haploinsufficiency of L1cam significantly increased the severity of aganglionosis in Et‐3 and Ednrb null mutant embryos. Furthermore, the colonization of the developing gut by neural crest‐derived cells was significantly delayed in L1cam−/y; Et‐3−/− and L1cam−/y;Ednrbsl/sl embryos. Conclusions & Inferences  We have identified the X‐linked gene, L1cam, as the first modifier gene for members of the endothelin signalling pathway during development of the enteric nervous system. Mutations in L1CAM may act to modulate the severity of aganglionosis in some cases of Hirschsprung’s disease.
doi_str_mv 10.1111/j.1365-2982.2011.01692.x
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_911158427</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>903662085</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3512-96db40c68978e8fefce1bf56052b48469b47ee9c75394bb9d5b85773bda7d97d3</originalsourceid><addsrcrecordid>eNqFkctOwzAQRS0Eorx-AXnHKsF2YidesEAVL6nABtaWHU_aVHFS7JS2f4_Do1tGI8217tXImoMQpiSlsa6XKc0ET5gsWcoIpSmhQrJ0e4BO9sbhqDlJqGR8gk5DWBJCBMvFMZowmkkuiTxB2xmttMO6GgLWsbHrbVM34PEcOsB177EDZ8AH3Nd4WACGzvZxtk2HQzPvdBvVHK_0sNjoHbZrPz6hG8A3Fe7Af_brgMMuDOCwhU9o-5WL9jk6qnUb4OJ3nqH3-7u36WMye314mt7OkirjlCVSWJOTSpSyKKGsoa6AmpoLwpnJy1xIkxcAsip4JnNjpOWm5EWRGasLKwubnaGrn70r33-sIQzKNaGCttUdxJ8pGe_Jy5wV_ydJJgQjJY_Jy9_k2jiwauUbp_1O_Z01Bm5-Apumhd3ep0SN-NRSjZTUSEmN-NQ3PrVVL8-vo8q-AAdMj14</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>903662085</pqid></control><display><type>article</type><title>L1cam acts as a modifier gene for members of the endothelin signalling pathway during enteric nervous system development</title><source>Wiley</source><creator>Wallace, A. S. ; Tan, M. X. ; Schachner, M. ; Anderson, R. B.</creator><creatorcontrib>Wallace, A. S. ; Tan, M. X. ; Schachner, M. ; Anderson, R. B.</creatorcontrib><description>Background  The enteric nervous system originates from neural crest cells that migrate into the embryonic foregut and then sequentially colonize the midgut and hindgut. Defects in neural crest migration result in regions of the gut that lack enteric ganglia, a condition in humans called Hirschsprung’s disease. The high degree of phenotypic variability reported in Hirschsprung’s disease suggests the involvement of modifier genes. Methods  We used a two‐locus complementation approach to screen for genetic interactions between L1cam and members of the endothelin signalling pathway. Immunohistochemistry was used to label PGP9.5+ enteric neurons and Sox10+ neural crest‐derived cells in wholemount preparations of embryonic gut. Key Results  Loss or haploinsufficiency of L1cam significantly increased the severity of aganglionosis in Et‐3 and Ednrb null mutant embryos. Furthermore, the colonization of the developing gut by neural crest‐derived cells was significantly delayed in L1cam−/y; Et‐3−/− and L1cam−/y;Ednrbsl/sl embryos. Conclusions &amp; Inferences  We have identified the X‐linked gene, L1cam, as the first modifier gene for members of the endothelin signalling pathway during development of the enteric nervous system. Mutations in L1CAM may act to modulate the severity of aganglionosis in some cases of Hirschsprung’s disease.</description><identifier>ISSN: 1350-1925</identifier><identifier>EISSN: 1365-2982</identifier><identifier>DOI: 10.1111/j.1365-2982.2011.01692.x</identifier><identifier>PMID: 21395909</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Animals ; Apoptosis - physiology ; Cell migration ; Cell Movement - physiology ; Cell Proliferation ; Colonization ; Complementation ; development ; Digestive tract ; Embryos ; Endothelin 3 ; Endothelins - genetics ; Endothelins - metabolism ; Enteric nervous system ; Enteric Nervous System - abnormalities ; Enteric Nervous System - embryology ; Foregut ; Ganglia ; Genes, Modifier ; Genes, X-Linked ; Genetic Complementation Test ; haploinsufficiency ; Hindgut ; Hirschsprung Disease - embryology ; Hirschsprung Disease - genetics ; Hirschsprung Disease - metabolism ; Hirschsprung's disease ; Humans ; Immunohistochemistry ; Intestines - embryology ; Intestines - innervation ; Mice ; Mice, Knockout ; Midgut ; Mutation ; Neural Cell Adhesion Molecule L1 - genetics ; Neural Cell Adhesion Molecule L1 - metabolism ; Neural crest ; Neurons ; Receptors, Endothelin - genetics ; Receptors, Endothelin - metabolism ; Signal transduction ; Signal Transduction - physiology ; X chromosome</subject><ispartof>Neurogastroenterology and motility, 2011-11, Vol.23 (11), p.e510-e522</ispartof><rights>2011 Blackwell Publishing Ltd</rights><rights>2011 Blackwell Publishing Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3512-96db40c68978e8fefce1bf56052b48469b47ee9c75394bb9d5b85773bda7d97d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21395909$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wallace, A. S.</creatorcontrib><creatorcontrib>Tan, M. X.</creatorcontrib><creatorcontrib>Schachner, M.</creatorcontrib><creatorcontrib>Anderson, R. B.</creatorcontrib><title>L1cam acts as a modifier gene for members of the endothelin signalling pathway during enteric nervous system development</title><title>Neurogastroenterology and motility</title><addtitle>Neurogastroenterol Motil</addtitle><description>Background  The enteric nervous system originates from neural crest cells that migrate into the embryonic foregut and then sequentially colonize the midgut and hindgut. Defects in neural crest migration result in regions of the gut that lack enteric ganglia, a condition in humans called Hirschsprung’s disease. The high degree of phenotypic variability reported in Hirschsprung’s disease suggests the involvement of modifier genes. Methods  We used a two‐locus complementation approach to screen for genetic interactions between L1cam and members of the endothelin signalling pathway. Immunohistochemistry was used to label PGP9.5+ enteric neurons and Sox10+ neural crest‐derived cells in wholemount preparations of embryonic gut. Key Results  Loss or haploinsufficiency of L1cam significantly increased the severity of aganglionosis in Et‐3 and Ednrb null mutant embryos. Furthermore, the colonization of the developing gut by neural crest‐derived cells was significantly delayed in L1cam−/y; Et‐3−/− and L1cam−/y;Ednrbsl/sl embryos. Conclusions &amp; Inferences  We have identified the X‐linked gene, L1cam, as the first modifier gene for members of the endothelin signalling pathway during development of the enteric nervous system. Mutations in L1CAM may act to modulate the severity of aganglionosis in some cases of Hirschsprung’s disease.</description><subject>Animals</subject><subject>Apoptosis - physiology</subject><subject>Cell migration</subject><subject>Cell Movement - physiology</subject><subject>Cell Proliferation</subject><subject>Colonization</subject><subject>Complementation</subject><subject>development</subject><subject>Digestive tract</subject><subject>Embryos</subject><subject>Endothelin 3</subject><subject>Endothelins - genetics</subject><subject>Endothelins - metabolism</subject><subject>Enteric nervous system</subject><subject>Enteric Nervous System - abnormalities</subject><subject>Enteric Nervous System - embryology</subject><subject>Foregut</subject><subject>Ganglia</subject><subject>Genes, Modifier</subject><subject>Genes, X-Linked</subject><subject>Genetic Complementation Test</subject><subject>haploinsufficiency</subject><subject>Hindgut</subject><subject>Hirschsprung Disease - embryology</subject><subject>Hirschsprung Disease - genetics</subject><subject>Hirschsprung Disease - metabolism</subject><subject>Hirschsprung's disease</subject><subject>Humans</subject><subject>Immunohistochemistry</subject><subject>Intestines - embryology</subject><subject>Intestines - innervation</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Midgut</subject><subject>Mutation</subject><subject>Neural Cell Adhesion Molecule L1 - genetics</subject><subject>Neural Cell Adhesion Molecule L1 - metabolism</subject><subject>Neural crest</subject><subject>Neurons</subject><subject>Receptors, Endothelin - genetics</subject><subject>Receptors, Endothelin - metabolism</subject><subject>Signal transduction</subject><subject>Signal Transduction - physiology</subject><subject>X chromosome</subject><issn>1350-1925</issn><issn>1365-2982</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkctOwzAQRS0Eorx-AXnHKsF2YidesEAVL6nABtaWHU_aVHFS7JS2f4_Do1tGI8217tXImoMQpiSlsa6XKc0ET5gsWcoIpSmhQrJ0e4BO9sbhqDlJqGR8gk5DWBJCBMvFMZowmkkuiTxB2xmttMO6GgLWsbHrbVM34PEcOsB177EDZ8AH3Nd4WACGzvZxtk2HQzPvdBvVHK_0sNjoHbZrPz6hG8A3Fe7Af_brgMMuDOCwhU9o-5WL9jk6qnUb4OJ3nqH3-7u36WMye314mt7OkirjlCVSWJOTSpSyKKGsoa6AmpoLwpnJy1xIkxcAsip4JnNjpOWm5EWRGasLKwubnaGrn70r33-sIQzKNaGCttUdxJ8pGe_Jy5wV_ydJJgQjJY_Jy9_k2jiwauUbp_1O_Z01Bm5-Apumhd3ep0SN-NRSjZTUSEmN-NQ3PrVVL8-vo8q-AAdMj14</recordid><startdate>201111</startdate><enddate>201111</enddate><creator>Wallace, A. S.</creator><creator>Tan, M. X.</creator><creator>Schachner, M.</creator><creator>Anderson, R. B.</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>7TK</scope></search><sort><creationdate>201111</creationdate><title>L1cam acts as a modifier gene for members of the endothelin signalling pathway during enteric nervous system development</title><author>Wallace, A. S. ; Tan, M. X. ; Schachner, M. ; Anderson, R. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3512-96db40c68978e8fefce1bf56052b48469b47ee9c75394bb9d5b85773bda7d97d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Apoptosis - physiology</topic><topic>Cell migration</topic><topic>Cell Movement - physiology</topic><topic>Cell Proliferation</topic><topic>Colonization</topic><topic>Complementation</topic><topic>development</topic><topic>Digestive tract</topic><topic>Embryos</topic><topic>Endothelin 3</topic><topic>Endothelins - genetics</topic><topic>Endothelins - metabolism</topic><topic>Enteric nervous system</topic><topic>Enteric Nervous System - abnormalities</topic><topic>Enteric Nervous System - embryology</topic><topic>Foregut</topic><topic>Ganglia</topic><topic>Genes, Modifier</topic><topic>Genes, X-Linked</topic><topic>Genetic Complementation Test</topic><topic>haploinsufficiency</topic><topic>Hindgut</topic><topic>Hirschsprung Disease - embryology</topic><topic>Hirschsprung Disease - genetics</topic><topic>Hirschsprung Disease - metabolism</topic><topic>Hirschsprung's disease</topic><topic>Humans</topic><topic>Immunohistochemistry</topic><topic>Intestines - embryology</topic><topic>Intestines - innervation</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Midgut</topic><topic>Mutation</topic><topic>Neural Cell Adhesion Molecule L1 - genetics</topic><topic>Neural Cell Adhesion Molecule L1 - metabolism</topic><topic>Neural crest</topic><topic>Neurons</topic><topic>Receptors, Endothelin - genetics</topic><topic>Receptors, Endothelin - metabolism</topic><topic>Signal transduction</topic><topic>Signal Transduction - physiology</topic><topic>X chromosome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wallace, A. S.</creatorcontrib><creatorcontrib>Tan, M. X.</creatorcontrib><creatorcontrib>Schachner, M.</creatorcontrib><creatorcontrib>Anderson, R. B.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><jtitle>Neurogastroenterology and motility</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wallace, A. S.</au><au>Tan, M. X.</au><au>Schachner, M.</au><au>Anderson, R. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>L1cam acts as a modifier gene for members of the endothelin signalling pathway during enteric nervous system development</atitle><jtitle>Neurogastroenterology and motility</jtitle><addtitle>Neurogastroenterol Motil</addtitle><date>2011-11</date><risdate>2011</risdate><volume>23</volume><issue>11</issue><spage>e510</spage><epage>e522</epage><pages>e510-e522</pages><issn>1350-1925</issn><eissn>1365-2982</eissn><abstract>Background  The enteric nervous system originates from neural crest cells that migrate into the embryonic foregut and then sequentially colonize the midgut and hindgut. Defects in neural crest migration result in regions of the gut that lack enteric ganglia, a condition in humans called Hirschsprung’s disease. The high degree of phenotypic variability reported in Hirschsprung’s disease suggests the involvement of modifier genes. Methods  We used a two‐locus complementation approach to screen for genetic interactions between L1cam and members of the endothelin signalling pathway. Immunohistochemistry was used to label PGP9.5+ enteric neurons and Sox10+ neural crest‐derived cells in wholemount preparations of embryonic gut. Key Results  Loss or haploinsufficiency of L1cam significantly increased the severity of aganglionosis in Et‐3 and Ednrb null mutant embryos. Furthermore, the colonization of the developing gut by neural crest‐derived cells was significantly delayed in L1cam−/y; Et‐3−/− and L1cam−/y;Ednrbsl/sl embryos. Conclusions &amp; Inferences  We have identified the X‐linked gene, L1cam, as the first modifier gene for members of the endothelin signalling pathway during development of the enteric nervous system. Mutations in L1CAM may act to modulate the severity of aganglionosis in some cases of Hirschsprung’s disease.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>21395909</pmid><doi>10.1111/j.1365-2982.2011.01692.x</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1350-1925
ispartof Neurogastroenterology and motility, 2011-11, Vol.23 (11), p.e510-e522
issn 1350-1925
1365-2982
language eng
recordid cdi_proquest_miscellaneous_911158427
source Wiley
subjects Animals
Apoptosis - physiology
Cell migration
Cell Movement - physiology
Cell Proliferation
Colonization
Complementation
development
Digestive tract
Embryos
Endothelin 3
Endothelins - genetics
Endothelins - metabolism
Enteric nervous system
Enteric Nervous System - abnormalities
Enteric Nervous System - embryology
Foregut
Ganglia
Genes, Modifier
Genes, X-Linked
Genetic Complementation Test
haploinsufficiency
Hindgut
Hirschsprung Disease - embryology
Hirschsprung Disease - genetics
Hirschsprung Disease - metabolism
Hirschsprung's disease
Humans
Immunohistochemistry
Intestines - embryology
Intestines - innervation
Mice
Mice, Knockout
Midgut
Mutation
Neural Cell Adhesion Molecule L1 - genetics
Neural Cell Adhesion Molecule L1 - metabolism
Neural crest
Neurons
Receptors, Endothelin - genetics
Receptors, Endothelin - metabolism
Signal transduction
Signal Transduction - physiology
X chromosome
title L1cam acts as a modifier gene for members of the endothelin signalling pathway during enteric nervous system development
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A31%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=L1cam%20acts%20as%20a%20modifier%20gene%20for%20members%20of%20the%20endothelin%20signalling%20pathway%20during%20enteric%20nervous%20system%20development&rft.jtitle=Neurogastroenterology%20and%20motility&rft.au=Wallace,%20A.%20S.&rft.date=2011-11&rft.volume=23&rft.issue=11&rft.spage=e510&rft.epage=e522&rft.pages=e510-e522&rft.issn=1350-1925&rft.eissn=1365-2982&rft_id=info:doi/10.1111/j.1365-2982.2011.01692.x&rft_dat=%3Cproquest_pubme%3E903662085%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3512-96db40c68978e8fefce1bf56052b48469b47ee9c75394bb9d5b85773bda7d97d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=903662085&rft_id=info:pmid/21395909&rfr_iscdi=true