Loading…
Synthesis of Biocompatible PEG-Based Star Polymers with Cationic and Degradable Core for siRNA Delivery
Star polymers with poly(ethylene glycol) (PEG) arms and a degradable cationic core were synthesized by the atom transfer radical copolymerization (ATRP) of poly(ethylene glycol) methyl ether methacrylate macromonomer (PEGMA), 2-(dimethylamino)ethyl methacrylate (DMAEMA), and a disulfide dimethacryla...
Saved in:
Published in: | Biomacromolecules 2011-10, Vol.12 (10), p.3478-3486 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Star polymers with poly(ethylene glycol) (PEG) arms and a degradable cationic core were synthesized by the atom transfer radical copolymerization (ATRP) of poly(ethylene glycol) methyl ether methacrylate macromonomer (PEGMA), 2-(dimethylamino)ethyl methacrylate (DMAEMA), and a disulfide dimethacrylate (cross-linker, SS) via an “arm-first” approach. The star polymers had a diameter ∼15 nm and were degraded under redox conditions by glutathione treatment into individual polymeric chains due to cleavage of the disulfide cross-linker, as confirmed by dynamic light scattering. The star polymers were cultured with mouse calvarial preosteoblast-like cells, embryonic day 1, subclone 4 (MC3T3-E1.4) to determine biocompatibility. Data suggest star polymers were biocompatible, with ≥80% cell viability after 48 h of incubation even at high concentration (800 μg/mL). Zeta potential values varied with N/P ratio confirming complexation with siRNA. Successful cellular uptake of the star polymers in MC3T3-E1.4 cells was observed by confocal microscopy and flow cytometry after 24 h of incubation. |
---|---|
ISSN: | 1525-7797 1526-4602 |
DOI: | 10.1021/bm2006455 |