Loading…

The Alzheimer’s therapeutic PBT2 promotes amyloid‐β degradation and GSK3 phosphorylation via a metal chaperone activity

J. Neurochem. (2011) 119, 220–230. Impaired metal ion homeostasis causes synaptic dysfunction and treatments for Alzheimer’s disease (AD) that target metal ions have therefore been developed. The leading compound in this class of therapeutic, PBT2, improved cognition in a clinical trial with AD pati...

Full description

Saved in:
Bibliographic Details
Published in:Journal of neurochemistry 2011-10, Vol.119 (1), p.220-230
Main Authors: Crouch, Peter J., Savva, Maria S., Hung, Lin W., Donnelly, Paul S., Mot, Alexandra I., Parker, Sarah J., Greenough, Mark A., Volitakis, Irene, Adlard, Paul A., Cherny, Robert A., Masters, Colin L., Bush, Ashley I., Barnham, Kevin J., White, Anthony R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4502-345913fa3753e96258257df5946f9fa8b5db5a9f97ca6e4700f8c0ef8d8abddc3
cites cdi_FETCH-LOGICAL-c4502-345913fa3753e96258257df5946f9fa8b5db5a9f97ca6e4700f8c0ef8d8abddc3
container_end_page 230
container_issue 1
container_start_page 220
container_title Journal of neurochemistry
container_volume 119
creator Crouch, Peter J.
Savva, Maria S.
Hung, Lin W.
Donnelly, Paul S.
Mot, Alexandra I.
Parker, Sarah J.
Greenough, Mark A.
Volitakis, Irene
Adlard, Paul A.
Cherny, Robert A.
Masters, Colin L.
Bush, Ashley I.
Barnham, Kevin J.
White, Anthony R.
description J. Neurochem. (2011) 119, 220–230. Impaired metal ion homeostasis causes synaptic dysfunction and treatments for Alzheimer’s disease (AD) that target metal ions have therefore been developed. The leading compound in this class of therapeutic, PBT2, improved cognition in a clinical trial with AD patients. The aim of the present study was to examine the cellular mechanism of action for PBT2. We show PBT2 induces inhibitory phosphorylation of the α‐ and β‐isoforms of glycogen synthase kinase 3 and that this activity is dependent on PBT2 translocating extracellular Zn and Cu into cells. This activity is supported when Aβ:Zn aggregates are the source of extracellular Zn and adding PBT2 to Aβ:Zn preparations promotes Aβ degradation by matrix metalloprotease 2. PBT2‐induced glycogen synthase kinase 3 phosphorylation appears to involve inhibition of the phosphatase calcineurin. Consistent with this, PBT2 increased phosphorylation of other calcineurin substrates, including cAMP response element binding protein and Ca2+/calmodulin‐dependent protein kinase. These data demonstrate PBT2 can decrease Aβ levels by sequestering the Zn that promotes extracellular formation of protease resistant Aβ:Zn aggregates, and that subsequent intracellular translocation of the Zn by PBT2 induces cellular responses with synapto‐trophic potential. Intracellular translocation of Zn and Cu via the metal chaperone activity of PBT2 may be an important mechanism by which PBT2 improves cognitive function in people with AD.
doi_str_mv 10.1111/j.1471-4159.2011.07402.x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_911162558</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>899129611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4502-345913fa3753e96258257df5946f9fa8b5db5a9f97ca6e4700f8c0ef8d8abddc3</originalsourceid><addsrcrecordid>eNqNkUFu1DAUhi0EokPhCsg7VhNsx07sBYsyKoVSFSSGteWxn4lHyWSwM6VBLHoEtlyjB-EQPQlOp3QLlixbet_7recPIUxJQfN6uS4or-mcU6EKRigtSM0JKy4foNl94SGaEcLYvCScHaAnKa0JoRWv6GN0wGitalmJGfqxbAAftd8bCB3Em6tfCQ8NRLOF3RAs_vh6yfA29l0_QMKmG9s-uJurn7-vsYMv0TgzhH6Dzcbhk0_vS7xt-pR3HNt94SIYbHAHg2mxbXJq7DeAjR3CRRjGp-iRN22CZ3fnIfr85ni5eDs_-3DybnF0NrdckDwBF4qW3pS1KEFVTEgmaueF4pVX3siVcCthlFe1NRXwmhAvLQEvnTQr52x5iF7sc_MkX3eQBt2FZKFtzQb6XdIq_2mOFfKfpFSKMlVRmkm5J23sU4rg9TaGzsRRU6InSXqtJxd6cqEnSfpWkr7Mrc_vHtmtOnD3jX-tZODVHvgWWhj_O1ifni-mW_kH6ZykKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>899129611</pqid></control><display><type>article</type><title>The Alzheimer’s therapeutic PBT2 promotes amyloid‐β degradation and GSK3 phosphorylation via a metal chaperone activity</title><source>Wiley</source><source>Full-Text Journals in Chemistry (Open access)</source><creator>Crouch, Peter J. ; Savva, Maria S. ; Hung, Lin W. ; Donnelly, Paul S. ; Mot, Alexandra I. ; Parker, Sarah J. ; Greenough, Mark A. ; Volitakis, Irene ; Adlard, Paul A. ; Cherny, Robert A. ; Masters, Colin L. ; Bush, Ashley I. ; Barnham, Kevin J. ; White, Anthony R.</creator><creatorcontrib>Crouch, Peter J. ; Savva, Maria S. ; Hung, Lin W. ; Donnelly, Paul S. ; Mot, Alexandra I. ; Parker, Sarah J. ; Greenough, Mark A. ; Volitakis, Irene ; Adlard, Paul A. ; Cherny, Robert A. ; Masters, Colin L. ; Bush, Ashley I. ; Barnham, Kevin J. ; White, Anthony R.</creatorcontrib><description>J. Neurochem. (2011) 119, 220–230. Impaired metal ion homeostasis causes synaptic dysfunction and treatments for Alzheimer’s disease (AD) that target metal ions have therefore been developed. The leading compound in this class of therapeutic, PBT2, improved cognition in a clinical trial with AD patients. The aim of the present study was to examine the cellular mechanism of action for PBT2. We show PBT2 induces inhibitory phosphorylation of the α‐ and β‐isoforms of glycogen synthase kinase 3 and that this activity is dependent on PBT2 translocating extracellular Zn and Cu into cells. This activity is supported when Aβ:Zn aggregates are the source of extracellular Zn and adding PBT2 to Aβ:Zn preparations promotes Aβ degradation by matrix metalloprotease 2. PBT2‐induced glycogen synthase kinase 3 phosphorylation appears to involve inhibition of the phosphatase calcineurin. Consistent with this, PBT2 increased phosphorylation of other calcineurin substrates, including cAMP response element binding protein and Ca2+/calmodulin‐dependent protein kinase. These data demonstrate PBT2 can decrease Aβ levels by sequestering the Zn that promotes extracellular formation of protease resistant Aβ:Zn aggregates, and that subsequent intracellular translocation of the Zn by PBT2 induces cellular responses with synapto‐trophic potential. Intracellular translocation of Zn and Cu via the metal chaperone activity of PBT2 may be an important mechanism by which PBT2 improves cognitive function in people with AD.</description><identifier>ISSN: 0022-3042</identifier><identifier>EISSN: 1471-4159</identifier><identifier>DOI: 10.1111/j.1471-4159.2011.07402.x</identifier><identifier>PMID: 21797865</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Alzheimer Disease - drug therapy ; Alzheimer’s disease ; Amyloid beta-Peptides - metabolism ; amyloid‐β (Aβ) ; Blotting, Western ; calcineurin ; Calcineurin - metabolism ; Calcineurin Inhibitors ; Caspase 3 - metabolism ; Cell Line, Tumor ; Clioquinol - analogs &amp; derivatives ; Clioquinol - pharmacology ; Copper - metabolism ; Enzyme Inhibitors - pharmacology ; Glycogen Synthase Kinase 3 - metabolism ; glycogen synthase kinase‐3 (GSK3) ; Humans ; Mass Spectrometry ; Matrix Metalloproteinase 2 - metabolism ; Metals - metabolism ; Molecular Chaperones - metabolism ; PBT2 ; Peptide Hydrolases - metabolism ; Phosphorylation - drug effects ; zinc ; Zinc - metabolism</subject><ispartof>Journal of neurochemistry, 2011-10, Vol.119 (1), p.220-230</ispartof><rights>2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry</rights><rights>2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4502-345913fa3753e96258257df5946f9fa8b5db5a9f97ca6e4700f8c0ef8d8abddc3</citedby><cites>FETCH-LOGICAL-c4502-345913fa3753e96258257df5946f9fa8b5db5a9f97ca6e4700f8c0ef8d8abddc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21797865$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Crouch, Peter J.</creatorcontrib><creatorcontrib>Savva, Maria S.</creatorcontrib><creatorcontrib>Hung, Lin W.</creatorcontrib><creatorcontrib>Donnelly, Paul S.</creatorcontrib><creatorcontrib>Mot, Alexandra I.</creatorcontrib><creatorcontrib>Parker, Sarah J.</creatorcontrib><creatorcontrib>Greenough, Mark A.</creatorcontrib><creatorcontrib>Volitakis, Irene</creatorcontrib><creatorcontrib>Adlard, Paul A.</creatorcontrib><creatorcontrib>Cherny, Robert A.</creatorcontrib><creatorcontrib>Masters, Colin L.</creatorcontrib><creatorcontrib>Bush, Ashley I.</creatorcontrib><creatorcontrib>Barnham, Kevin J.</creatorcontrib><creatorcontrib>White, Anthony R.</creatorcontrib><title>The Alzheimer’s therapeutic PBT2 promotes amyloid‐β degradation and GSK3 phosphorylation via a metal chaperone activity</title><title>Journal of neurochemistry</title><addtitle>J Neurochem</addtitle><description>J. Neurochem. (2011) 119, 220–230. Impaired metal ion homeostasis causes synaptic dysfunction and treatments for Alzheimer’s disease (AD) that target metal ions have therefore been developed. The leading compound in this class of therapeutic, PBT2, improved cognition in a clinical trial with AD patients. The aim of the present study was to examine the cellular mechanism of action for PBT2. We show PBT2 induces inhibitory phosphorylation of the α‐ and β‐isoforms of glycogen synthase kinase 3 and that this activity is dependent on PBT2 translocating extracellular Zn and Cu into cells. This activity is supported when Aβ:Zn aggregates are the source of extracellular Zn and adding PBT2 to Aβ:Zn preparations promotes Aβ degradation by matrix metalloprotease 2. PBT2‐induced glycogen synthase kinase 3 phosphorylation appears to involve inhibition of the phosphatase calcineurin. Consistent with this, PBT2 increased phosphorylation of other calcineurin substrates, including cAMP response element binding protein and Ca2+/calmodulin‐dependent protein kinase. These data demonstrate PBT2 can decrease Aβ levels by sequestering the Zn that promotes extracellular formation of protease resistant Aβ:Zn aggregates, and that subsequent intracellular translocation of the Zn by PBT2 induces cellular responses with synapto‐trophic potential. Intracellular translocation of Zn and Cu via the metal chaperone activity of PBT2 may be an important mechanism by which PBT2 improves cognitive function in people with AD.</description><subject>Alzheimer Disease - drug therapy</subject><subject>Alzheimer’s disease</subject><subject>Amyloid beta-Peptides - metabolism</subject><subject>amyloid‐β (Aβ)</subject><subject>Blotting, Western</subject><subject>calcineurin</subject><subject>Calcineurin - metabolism</subject><subject>Calcineurin Inhibitors</subject><subject>Caspase 3 - metabolism</subject><subject>Cell Line, Tumor</subject><subject>Clioquinol - analogs &amp; derivatives</subject><subject>Clioquinol - pharmacology</subject><subject>Copper - metabolism</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Glycogen Synthase Kinase 3 - metabolism</subject><subject>glycogen synthase kinase‐3 (GSK3)</subject><subject>Humans</subject><subject>Mass Spectrometry</subject><subject>Matrix Metalloproteinase 2 - metabolism</subject><subject>Metals - metabolism</subject><subject>Molecular Chaperones - metabolism</subject><subject>PBT2</subject><subject>Peptide Hydrolases - metabolism</subject><subject>Phosphorylation - drug effects</subject><subject>zinc</subject><subject>Zinc - metabolism</subject><issn>0022-3042</issn><issn>1471-4159</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkUFu1DAUhi0EokPhCsg7VhNsx07sBYsyKoVSFSSGteWxn4lHyWSwM6VBLHoEtlyjB-EQPQlOp3QLlixbet_7recPIUxJQfN6uS4or-mcU6EKRigtSM0JKy4foNl94SGaEcLYvCScHaAnKa0JoRWv6GN0wGitalmJGfqxbAAftd8bCB3Em6tfCQ8NRLOF3RAs_vh6yfA29l0_QMKmG9s-uJurn7-vsYMv0TgzhH6Dzcbhk0_vS7xt-pR3HNt94SIYbHAHg2mxbXJq7DeAjR3CRRjGp-iRN22CZ3fnIfr85ni5eDs_-3DybnF0NrdckDwBF4qW3pS1KEFVTEgmaueF4pVX3siVcCthlFe1NRXwmhAvLQEvnTQr52x5iF7sc_MkX3eQBt2FZKFtzQb6XdIq_2mOFfKfpFSKMlVRmkm5J23sU4rg9TaGzsRRU6InSXqtJxd6cqEnSfpWkr7Mrc_vHtmtOnD3jX-tZODVHvgWWhj_O1ifni-mW_kH6ZykKg</recordid><startdate>201110</startdate><enddate>201110</enddate><creator>Crouch, Peter J.</creator><creator>Savva, Maria S.</creator><creator>Hung, Lin W.</creator><creator>Donnelly, Paul S.</creator><creator>Mot, Alexandra I.</creator><creator>Parker, Sarah J.</creator><creator>Greenough, Mark A.</creator><creator>Volitakis, Irene</creator><creator>Adlard, Paul A.</creator><creator>Cherny, Robert A.</creator><creator>Masters, Colin L.</creator><creator>Bush, Ashley I.</creator><creator>Barnham, Kevin J.</creator><creator>White, Anthony R.</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope></search><sort><creationdate>201110</creationdate><title>The Alzheimer’s therapeutic PBT2 promotes amyloid‐β degradation and GSK3 phosphorylation via a metal chaperone activity</title><author>Crouch, Peter J. ; Savva, Maria S. ; Hung, Lin W. ; Donnelly, Paul S. ; Mot, Alexandra I. ; Parker, Sarah J. ; Greenough, Mark A. ; Volitakis, Irene ; Adlard, Paul A. ; Cherny, Robert A. ; Masters, Colin L. ; Bush, Ashley I. ; Barnham, Kevin J. ; White, Anthony R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4502-345913fa3753e96258257df5946f9fa8b5db5a9f97ca6e4700f8c0ef8d8abddc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Alzheimer Disease - drug therapy</topic><topic>Alzheimer’s disease</topic><topic>Amyloid beta-Peptides - metabolism</topic><topic>amyloid‐β (Aβ)</topic><topic>Blotting, Western</topic><topic>calcineurin</topic><topic>Calcineurin - metabolism</topic><topic>Calcineurin Inhibitors</topic><topic>Caspase 3 - metabolism</topic><topic>Cell Line, Tumor</topic><topic>Clioquinol - analogs &amp; derivatives</topic><topic>Clioquinol - pharmacology</topic><topic>Copper - metabolism</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Glycogen Synthase Kinase 3 - metabolism</topic><topic>glycogen synthase kinase‐3 (GSK3)</topic><topic>Humans</topic><topic>Mass Spectrometry</topic><topic>Matrix Metalloproteinase 2 - metabolism</topic><topic>Metals - metabolism</topic><topic>Molecular Chaperones - metabolism</topic><topic>PBT2</topic><topic>Peptide Hydrolases - metabolism</topic><topic>Phosphorylation - drug effects</topic><topic>zinc</topic><topic>Zinc - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crouch, Peter J.</creatorcontrib><creatorcontrib>Savva, Maria S.</creatorcontrib><creatorcontrib>Hung, Lin W.</creatorcontrib><creatorcontrib>Donnelly, Paul S.</creatorcontrib><creatorcontrib>Mot, Alexandra I.</creatorcontrib><creatorcontrib>Parker, Sarah J.</creatorcontrib><creatorcontrib>Greenough, Mark A.</creatorcontrib><creatorcontrib>Volitakis, Irene</creatorcontrib><creatorcontrib>Adlard, Paul A.</creatorcontrib><creatorcontrib>Cherny, Robert A.</creatorcontrib><creatorcontrib>Masters, Colin L.</creatorcontrib><creatorcontrib>Bush, Ashley I.</creatorcontrib><creatorcontrib>Barnham, Kevin J.</creatorcontrib><creatorcontrib>White, Anthony R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><jtitle>Journal of neurochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crouch, Peter J.</au><au>Savva, Maria S.</au><au>Hung, Lin W.</au><au>Donnelly, Paul S.</au><au>Mot, Alexandra I.</au><au>Parker, Sarah J.</au><au>Greenough, Mark A.</au><au>Volitakis, Irene</au><au>Adlard, Paul A.</au><au>Cherny, Robert A.</au><au>Masters, Colin L.</au><au>Bush, Ashley I.</au><au>Barnham, Kevin J.</au><au>White, Anthony R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Alzheimer’s therapeutic PBT2 promotes amyloid‐β degradation and GSK3 phosphorylation via a metal chaperone activity</atitle><jtitle>Journal of neurochemistry</jtitle><addtitle>J Neurochem</addtitle><date>2011-10</date><risdate>2011</risdate><volume>119</volume><issue>1</issue><spage>220</spage><epage>230</epage><pages>220-230</pages><issn>0022-3042</issn><eissn>1471-4159</eissn><abstract>J. Neurochem. (2011) 119, 220–230. Impaired metal ion homeostasis causes synaptic dysfunction and treatments for Alzheimer’s disease (AD) that target metal ions have therefore been developed. The leading compound in this class of therapeutic, PBT2, improved cognition in a clinical trial with AD patients. The aim of the present study was to examine the cellular mechanism of action for PBT2. We show PBT2 induces inhibitory phosphorylation of the α‐ and β‐isoforms of glycogen synthase kinase 3 and that this activity is dependent on PBT2 translocating extracellular Zn and Cu into cells. This activity is supported when Aβ:Zn aggregates are the source of extracellular Zn and adding PBT2 to Aβ:Zn preparations promotes Aβ degradation by matrix metalloprotease 2. PBT2‐induced glycogen synthase kinase 3 phosphorylation appears to involve inhibition of the phosphatase calcineurin. Consistent with this, PBT2 increased phosphorylation of other calcineurin substrates, including cAMP response element binding protein and Ca2+/calmodulin‐dependent protein kinase. These data demonstrate PBT2 can decrease Aβ levels by sequestering the Zn that promotes extracellular formation of protease resistant Aβ:Zn aggregates, and that subsequent intracellular translocation of the Zn by PBT2 induces cellular responses with synapto‐trophic potential. Intracellular translocation of Zn and Cu via the metal chaperone activity of PBT2 may be an important mechanism by which PBT2 improves cognitive function in people with AD.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>21797865</pmid><doi>10.1111/j.1471-4159.2011.07402.x</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3042
ispartof Journal of neurochemistry, 2011-10, Vol.119 (1), p.220-230
issn 0022-3042
1471-4159
language eng
recordid cdi_proquest_miscellaneous_911162558
source Wiley; Full-Text Journals in Chemistry (Open access)
subjects Alzheimer Disease - drug therapy
Alzheimer’s disease
Amyloid beta-Peptides - metabolism
amyloid‐β (Aβ)
Blotting, Western
calcineurin
Calcineurin - metabolism
Calcineurin Inhibitors
Caspase 3 - metabolism
Cell Line, Tumor
Clioquinol - analogs & derivatives
Clioquinol - pharmacology
Copper - metabolism
Enzyme Inhibitors - pharmacology
Glycogen Synthase Kinase 3 - metabolism
glycogen synthase kinase‐3 (GSK3)
Humans
Mass Spectrometry
Matrix Metalloproteinase 2 - metabolism
Metals - metabolism
Molecular Chaperones - metabolism
PBT2
Peptide Hydrolases - metabolism
Phosphorylation - drug effects
zinc
Zinc - metabolism
title The Alzheimer’s therapeutic PBT2 promotes amyloid‐β degradation and GSK3 phosphorylation via a metal chaperone activity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A09%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Alzheimer%E2%80%99s%20therapeutic%20PBT2%20promotes%20amyloid%E2%80%90%CE%B2%20degradation%20and%20GSK3%20phosphorylation%20via%20a%20metal%20chaperone%20activity&rft.jtitle=Journal%20of%20neurochemistry&rft.au=Crouch,%20Peter%20J.&rft.date=2011-10&rft.volume=119&rft.issue=1&rft.spage=220&rft.epage=230&rft.pages=220-230&rft.issn=0022-3042&rft.eissn=1471-4159&rft_id=info:doi/10.1111/j.1471-4159.2011.07402.x&rft_dat=%3Cproquest_cross%3E899129611%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4502-345913fa3753e96258257df5946f9fa8b5db5a9f97ca6e4700f8c0ef8d8abddc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=899129611&rft_id=info:pmid/21797865&rfr_iscdi=true