Loading…
The Alzheimer’s therapeutic PBT2 promotes amyloid‐β degradation and GSK3 phosphorylation via a metal chaperone activity
J. Neurochem. (2011) 119, 220–230. Impaired metal ion homeostasis causes synaptic dysfunction and treatments for Alzheimer’s disease (AD) that target metal ions have therefore been developed. The leading compound in this class of therapeutic, PBT2, improved cognition in a clinical trial with AD pati...
Saved in:
Published in: | Journal of neurochemistry 2011-10, Vol.119 (1), p.220-230 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4502-345913fa3753e96258257df5946f9fa8b5db5a9f97ca6e4700f8c0ef8d8abddc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c4502-345913fa3753e96258257df5946f9fa8b5db5a9f97ca6e4700f8c0ef8d8abddc3 |
container_end_page | 230 |
container_issue | 1 |
container_start_page | 220 |
container_title | Journal of neurochemistry |
container_volume | 119 |
creator | Crouch, Peter J. Savva, Maria S. Hung, Lin W. Donnelly, Paul S. Mot, Alexandra I. Parker, Sarah J. Greenough, Mark A. Volitakis, Irene Adlard, Paul A. Cherny, Robert A. Masters, Colin L. Bush, Ashley I. Barnham, Kevin J. White, Anthony R. |
description | J. Neurochem. (2011) 119, 220–230.
Impaired metal ion homeostasis causes synaptic dysfunction and treatments for Alzheimer’s disease (AD) that target metal ions have therefore been developed. The leading compound in this class of therapeutic, PBT2, improved cognition in a clinical trial with AD patients. The aim of the present study was to examine the cellular mechanism of action for PBT2. We show PBT2 induces inhibitory phosphorylation of the α‐ and β‐isoforms of glycogen synthase kinase 3 and that this activity is dependent on PBT2 translocating extracellular Zn and Cu into cells. This activity is supported when Aβ:Zn aggregates are the source of extracellular Zn and adding PBT2 to Aβ:Zn preparations promotes Aβ degradation by matrix metalloprotease 2. PBT2‐induced glycogen synthase kinase 3 phosphorylation appears to involve inhibition of the phosphatase calcineurin. Consistent with this, PBT2 increased phosphorylation of other calcineurin substrates, including cAMP response element binding protein and Ca2+/calmodulin‐dependent protein kinase. These data demonstrate PBT2 can decrease Aβ levels by sequestering the Zn that promotes extracellular formation of protease resistant Aβ:Zn aggregates, and that subsequent intracellular translocation of the Zn by PBT2 induces cellular responses with synapto‐trophic potential. Intracellular translocation of Zn and Cu via the metal chaperone activity of PBT2 may be an important mechanism by which PBT2 improves cognitive function in people with AD. |
doi_str_mv | 10.1111/j.1471-4159.2011.07402.x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_911162558</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>899129611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4502-345913fa3753e96258257df5946f9fa8b5db5a9f97ca6e4700f8c0ef8d8abddc3</originalsourceid><addsrcrecordid>eNqNkUFu1DAUhi0EokPhCsg7VhNsx07sBYsyKoVSFSSGteWxn4lHyWSwM6VBLHoEtlyjB-EQPQlOp3QLlixbet_7recPIUxJQfN6uS4or-mcU6EKRigtSM0JKy4foNl94SGaEcLYvCScHaAnKa0JoRWv6GN0wGitalmJGfqxbAAftd8bCB3Em6tfCQ8NRLOF3RAs_vh6yfA29l0_QMKmG9s-uJurn7-vsYMv0TgzhH6Dzcbhk0_vS7xt-pR3HNt94SIYbHAHg2mxbXJq7DeAjR3CRRjGp-iRN22CZ3fnIfr85ni5eDs_-3DybnF0NrdckDwBF4qW3pS1KEFVTEgmaueF4pVX3siVcCthlFe1NRXwmhAvLQEvnTQr52x5iF7sc_MkX3eQBt2FZKFtzQb6XdIq_2mOFfKfpFSKMlVRmkm5J23sU4rg9TaGzsRRU6InSXqtJxd6cqEnSfpWkr7Mrc_vHtmtOnD3jX-tZODVHvgWWhj_O1ifni-mW_kH6ZykKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>899129611</pqid></control><display><type>article</type><title>The Alzheimer’s therapeutic PBT2 promotes amyloid‐β degradation and GSK3 phosphorylation via a metal chaperone activity</title><source>Wiley</source><source>Full-Text Journals in Chemistry (Open access)</source><creator>Crouch, Peter J. ; Savva, Maria S. ; Hung, Lin W. ; Donnelly, Paul S. ; Mot, Alexandra I. ; Parker, Sarah J. ; Greenough, Mark A. ; Volitakis, Irene ; Adlard, Paul A. ; Cherny, Robert A. ; Masters, Colin L. ; Bush, Ashley I. ; Barnham, Kevin J. ; White, Anthony R.</creator><creatorcontrib>Crouch, Peter J. ; Savva, Maria S. ; Hung, Lin W. ; Donnelly, Paul S. ; Mot, Alexandra I. ; Parker, Sarah J. ; Greenough, Mark A. ; Volitakis, Irene ; Adlard, Paul A. ; Cherny, Robert A. ; Masters, Colin L. ; Bush, Ashley I. ; Barnham, Kevin J. ; White, Anthony R.</creatorcontrib><description>J. Neurochem. (2011) 119, 220–230.
Impaired metal ion homeostasis causes synaptic dysfunction and treatments for Alzheimer’s disease (AD) that target metal ions have therefore been developed. The leading compound in this class of therapeutic, PBT2, improved cognition in a clinical trial with AD patients. The aim of the present study was to examine the cellular mechanism of action for PBT2. We show PBT2 induces inhibitory phosphorylation of the α‐ and β‐isoforms of glycogen synthase kinase 3 and that this activity is dependent on PBT2 translocating extracellular Zn and Cu into cells. This activity is supported when Aβ:Zn aggregates are the source of extracellular Zn and adding PBT2 to Aβ:Zn preparations promotes Aβ degradation by matrix metalloprotease 2. PBT2‐induced glycogen synthase kinase 3 phosphorylation appears to involve inhibition of the phosphatase calcineurin. Consistent with this, PBT2 increased phosphorylation of other calcineurin substrates, including cAMP response element binding protein and Ca2+/calmodulin‐dependent protein kinase. These data demonstrate PBT2 can decrease Aβ levels by sequestering the Zn that promotes extracellular formation of protease resistant Aβ:Zn aggregates, and that subsequent intracellular translocation of the Zn by PBT2 induces cellular responses with synapto‐trophic potential. Intracellular translocation of Zn and Cu via the metal chaperone activity of PBT2 may be an important mechanism by which PBT2 improves cognitive function in people with AD.</description><identifier>ISSN: 0022-3042</identifier><identifier>EISSN: 1471-4159</identifier><identifier>DOI: 10.1111/j.1471-4159.2011.07402.x</identifier><identifier>PMID: 21797865</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Alzheimer Disease - drug therapy ; Alzheimer’s disease ; Amyloid beta-Peptides - metabolism ; amyloid‐β (Aβ) ; Blotting, Western ; calcineurin ; Calcineurin - metabolism ; Calcineurin Inhibitors ; Caspase 3 - metabolism ; Cell Line, Tumor ; Clioquinol - analogs & derivatives ; Clioquinol - pharmacology ; Copper - metabolism ; Enzyme Inhibitors - pharmacology ; Glycogen Synthase Kinase 3 - metabolism ; glycogen synthase kinase‐3 (GSK3) ; Humans ; Mass Spectrometry ; Matrix Metalloproteinase 2 - metabolism ; Metals - metabolism ; Molecular Chaperones - metabolism ; PBT2 ; Peptide Hydrolases - metabolism ; Phosphorylation - drug effects ; zinc ; Zinc - metabolism</subject><ispartof>Journal of neurochemistry, 2011-10, Vol.119 (1), p.220-230</ispartof><rights>2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry</rights><rights>2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4502-345913fa3753e96258257df5946f9fa8b5db5a9f97ca6e4700f8c0ef8d8abddc3</citedby><cites>FETCH-LOGICAL-c4502-345913fa3753e96258257df5946f9fa8b5db5a9f97ca6e4700f8c0ef8d8abddc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21797865$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Crouch, Peter J.</creatorcontrib><creatorcontrib>Savva, Maria S.</creatorcontrib><creatorcontrib>Hung, Lin W.</creatorcontrib><creatorcontrib>Donnelly, Paul S.</creatorcontrib><creatorcontrib>Mot, Alexandra I.</creatorcontrib><creatorcontrib>Parker, Sarah J.</creatorcontrib><creatorcontrib>Greenough, Mark A.</creatorcontrib><creatorcontrib>Volitakis, Irene</creatorcontrib><creatorcontrib>Adlard, Paul A.</creatorcontrib><creatorcontrib>Cherny, Robert A.</creatorcontrib><creatorcontrib>Masters, Colin L.</creatorcontrib><creatorcontrib>Bush, Ashley I.</creatorcontrib><creatorcontrib>Barnham, Kevin J.</creatorcontrib><creatorcontrib>White, Anthony R.</creatorcontrib><title>The Alzheimer’s therapeutic PBT2 promotes amyloid‐β degradation and GSK3 phosphorylation via a metal chaperone activity</title><title>Journal of neurochemistry</title><addtitle>J Neurochem</addtitle><description>J. Neurochem. (2011) 119, 220–230.
Impaired metal ion homeostasis causes synaptic dysfunction and treatments for Alzheimer’s disease (AD) that target metal ions have therefore been developed. The leading compound in this class of therapeutic, PBT2, improved cognition in a clinical trial with AD patients. The aim of the present study was to examine the cellular mechanism of action for PBT2. We show PBT2 induces inhibitory phosphorylation of the α‐ and β‐isoforms of glycogen synthase kinase 3 and that this activity is dependent on PBT2 translocating extracellular Zn and Cu into cells. This activity is supported when Aβ:Zn aggregates are the source of extracellular Zn and adding PBT2 to Aβ:Zn preparations promotes Aβ degradation by matrix metalloprotease 2. PBT2‐induced glycogen synthase kinase 3 phosphorylation appears to involve inhibition of the phosphatase calcineurin. Consistent with this, PBT2 increased phosphorylation of other calcineurin substrates, including cAMP response element binding protein and Ca2+/calmodulin‐dependent protein kinase. These data demonstrate PBT2 can decrease Aβ levels by sequestering the Zn that promotes extracellular formation of protease resistant Aβ:Zn aggregates, and that subsequent intracellular translocation of the Zn by PBT2 induces cellular responses with synapto‐trophic potential. Intracellular translocation of Zn and Cu via the metal chaperone activity of PBT2 may be an important mechanism by which PBT2 improves cognitive function in people with AD.</description><subject>Alzheimer Disease - drug therapy</subject><subject>Alzheimer’s disease</subject><subject>Amyloid beta-Peptides - metabolism</subject><subject>amyloid‐β (Aβ)</subject><subject>Blotting, Western</subject><subject>calcineurin</subject><subject>Calcineurin - metabolism</subject><subject>Calcineurin Inhibitors</subject><subject>Caspase 3 - metabolism</subject><subject>Cell Line, Tumor</subject><subject>Clioquinol - analogs & derivatives</subject><subject>Clioquinol - pharmacology</subject><subject>Copper - metabolism</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Glycogen Synthase Kinase 3 - metabolism</subject><subject>glycogen synthase kinase‐3 (GSK3)</subject><subject>Humans</subject><subject>Mass Spectrometry</subject><subject>Matrix Metalloproteinase 2 - metabolism</subject><subject>Metals - metabolism</subject><subject>Molecular Chaperones - metabolism</subject><subject>PBT2</subject><subject>Peptide Hydrolases - metabolism</subject><subject>Phosphorylation - drug effects</subject><subject>zinc</subject><subject>Zinc - metabolism</subject><issn>0022-3042</issn><issn>1471-4159</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkUFu1DAUhi0EokPhCsg7VhNsx07sBYsyKoVSFSSGteWxn4lHyWSwM6VBLHoEtlyjB-EQPQlOp3QLlixbet_7recPIUxJQfN6uS4or-mcU6EKRigtSM0JKy4foNl94SGaEcLYvCScHaAnKa0JoRWv6GN0wGitalmJGfqxbAAftd8bCB3Em6tfCQ8NRLOF3RAs_vh6yfA29l0_QMKmG9s-uJurn7-vsYMv0TgzhH6Dzcbhk0_vS7xt-pR3HNt94SIYbHAHg2mxbXJq7DeAjR3CRRjGp-iRN22CZ3fnIfr85ni5eDs_-3DybnF0NrdckDwBF4qW3pS1KEFVTEgmaueF4pVX3siVcCthlFe1NRXwmhAvLQEvnTQr52x5iF7sc_MkX3eQBt2FZKFtzQb6XdIq_2mOFfKfpFSKMlVRmkm5J23sU4rg9TaGzsRRU6InSXqtJxd6cqEnSfpWkr7Mrc_vHtmtOnD3jX-tZODVHvgWWhj_O1ifni-mW_kH6ZykKg</recordid><startdate>201110</startdate><enddate>201110</enddate><creator>Crouch, Peter J.</creator><creator>Savva, Maria S.</creator><creator>Hung, Lin W.</creator><creator>Donnelly, Paul S.</creator><creator>Mot, Alexandra I.</creator><creator>Parker, Sarah J.</creator><creator>Greenough, Mark A.</creator><creator>Volitakis, Irene</creator><creator>Adlard, Paul A.</creator><creator>Cherny, Robert A.</creator><creator>Masters, Colin L.</creator><creator>Bush, Ashley I.</creator><creator>Barnham, Kevin J.</creator><creator>White, Anthony R.</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope></search><sort><creationdate>201110</creationdate><title>The Alzheimer’s therapeutic PBT2 promotes amyloid‐β degradation and GSK3 phosphorylation via a metal chaperone activity</title><author>Crouch, Peter J. ; Savva, Maria S. ; Hung, Lin W. ; Donnelly, Paul S. ; Mot, Alexandra I. ; Parker, Sarah J. ; Greenough, Mark A. ; Volitakis, Irene ; Adlard, Paul A. ; Cherny, Robert A. ; Masters, Colin L. ; Bush, Ashley I. ; Barnham, Kevin J. ; White, Anthony R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4502-345913fa3753e96258257df5946f9fa8b5db5a9f97ca6e4700f8c0ef8d8abddc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Alzheimer Disease - drug therapy</topic><topic>Alzheimer’s disease</topic><topic>Amyloid beta-Peptides - metabolism</topic><topic>amyloid‐β (Aβ)</topic><topic>Blotting, Western</topic><topic>calcineurin</topic><topic>Calcineurin - metabolism</topic><topic>Calcineurin Inhibitors</topic><topic>Caspase 3 - metabolism</topic><topic>Cell Line, Tumor</topic><topic>Clioquinol - analogs & derivatives</topic><topic>Clioquinol - pharmacology</topic><topic>Copper - metabolism</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Glycogen Synthase Kinase 3 - metabolism</topic><topic>glycogen synthase kinase‐3 (GSK3)</topic><topic>Humans</topic><topic>Mass Spectrometry</topic><topic>Matrix Metalloproteinase 2 - metabolism</topic><topic>Metals - metabolism</topic><topic>Molecular Chaperones - metabolism</topic><topic>PBT2</topic><topic>Peptide Hydrolases - metabolism</topic><topic>Phosphorylation - drug effects</topic><topic>zinc</topic><topic>Zinc - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crouch, Peter J.</creatorcontrib><creatorcontrib>Savva, Maria S.</creatorcontrib><creatorcontrib>Hung, Lin W.</creatorcontrib><creatorcontrib>Donnelly, Paul S.</creatorcontrib><creatorcontrib>Mot, Alexandra I.</creatorcontrib><creatorcontrib>Parker, Sarah J.</creatorcontrib><creatorcontrib>Greenough, Mark A.</creatorcontrib><creatorcontrib>Volitakis, Irene</creatorcontrib><creatorcontrib>Adlard, Paul A.</creatorcontrib><creatorcontrib>Cherny, Robert A.</creatorcontrib><creatorcontrib>Masters, Colin L.</creatorcontrib><creatorcontrib>Bush, Ashley I.</creatorcontrib><creatorcontrib>Barnham, Kevin J.</creatorcontrib><creatorcontrib>White, Anthony R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><jtitle>Journal of neurochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crouch, Peter J.</au><au>Savva, Maria S.</au><au>Hung, Lin W.</au><au>Donnelly, Paul S.</au><au>Mot, Alexandra I.</au><au>Parker, Sarah J.</au><au>Greenough, Mark A.</au><au>Volitakis, Irene</au><au>Adlard, Paul A.</au><au>Cherny, Robert A.</au><au>Masters, Colin L.</au><au>Bush, Ashley I.</au><au>Barnham, Kevin J.</au><au>White, Anthony R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Alzheimer’s therapeutic PBT2 promotes amyloid‐β degradation and GSK3 phosphorylation via a metal chaperone activity</atitle><jtitle>Journal of neurochemistry</jtitle><addtitle>J Neurochem</addtitle><date>2011-10</date><risdate>2011</risdate><volume>119</volume><issue>1</issue><spage>220</spage><epage>230</epage><pages>220-230</pages><issn>0022-3042</issn><eissn>1471-4159</eissn><abstract>J. Neurochem. (2011) 119, 220–230.
Impaired metal ion homeostasis causes synaptic dysfunction and treatments for Alzheimer’s disease (AD) that target metal ions have therefore been developed. The leading compound in this class of therapeutic, PBT2, improved cognition in a clinical trial with AD patients. The aim of the present study was to examine the cellular mechanism of action for PBT2. We show PBT2 induces inhibitory phosphorylation of the α‐ and β‐isoforms of glycogen synthase kinase 3 and that this activity is dependent on PBT2 translocating extracellular Zn and Cu into cells. This activity is supported when Aβ:Zn aggregates are the source of extracellular Zn and adding PBT2 to Aβ:Zn preparations promotes Aβ degradation by matrix metalloprotease 2. PBT2‐induced glycogen synthase kinase 3 phosphorylation appears to involve inhibition of the phosphatase calcineurin. Consistent with this, PBT2 increased phosphorylation of other calcineurin substrates, including cAMP response element binding protein and Ca2+/calmodulin‐dependent protein kinase. These data demonstrate PBT2 can decrease Aβ levels by sequestering the Zn that promotes extracellular formation of protease resistant Aβ:Zn aggregates, and that subsequent intracellular translocation of the Zn by PBT2 induces cellular responses with synapto‐trophic potential. Intracellular translocation of Zn and Cu via the metal chaperone activity of PBT2 may be an important mechanism by which PBT2 improves cognitive function in people with AD.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>21797865</pmid><doi>10.1111/j.1471-4159.2011.07402.x</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3042 |
ispartof | Journal of neurochemistry, 2011-10, Vol.119 (1), p.220-230 |
issn | 0022-3042 1471-4159 |
language | eng |
recordid | cdi_proquest_miscellaneous_911162558 |
source | Wiley; Full-Text Journals in Chemistry (Open access) |
subjects | Alzheimer Disease - drug therapy Alzheimer’s disease Amyloid beta-Peptides - metabolism amyloid‐β (Aβ) Blotting, Western calcineurin Calcineurin - metabolism Calcineurin Inhibitors Caspase 3 - metabolism Cell Line, Tumor Clioquinol - analogs & derivatives Clioquinol - pharmacology Copper - metabolism Enzyme Inhibitors - pharmacology Glycogen Synthase Kinase 3 - metabolism glycogen synthase kinase‐3 (GSK3) Humans Mass Spectrometry Matrix Metalloproteinase 2 - metabolism Metals - metabolism Molecular Chaperones - metabolism PBT2 Peptide Hydrolases - metabolism Phosphorylation - drug effects zinc Zinc - metabolism |
title | The Alzheimer’s therapeutic PBT2 promotes amyloid‐β degradation and GSK3 phosphorylation via a metal chaperone activity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A09%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Alzheimer%E2%80%99s%20therapeutic%20PBT2%20promotes%20amyloid%E2%80%90%CE%B2%20degradation%20and%20GSK3%20phosphorylation%20via%20a%20metal%20chaperone%20activity&rft.jtitle=Journal%20of%20neurochemistry&rft.au=Crouch,%20Peter%20J.&rft.date=2011-10&rft.volume=119&rft.issue=1&rft.spage=220&rft.epage=230&rft.pages=220-230&rft.issn=0022-3042&rft.eissn=1471-4159&rft_id=info:doi/10.1111/j.1471-4159.2011.07402.x&rft_dat=%3Cproquest_cross%3E899129611%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4502-345913fa3753e96258257df5946f9fa8b5db5a9f97ca6e4700f8c0ef8d8abddc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=899129611&rft_id=info:pmid/21797865&rfr_iscdi=true |