Loading…

Synaptic profile of nucleus tractus solitarius neurons involved with the peripheral chemoreflex pathways

Abstract The glomus cells in the carotid bodies (CB) detect alterations in pH and pCO2 and low pO2 level in arterial blood. The carotid sinus nerve conveys the information related to the oxygen level to 2nd-order neurons in the nucleus tractus solitarius (NTS) via tractus solitarius (TS), which is p...

Full description

Saved in:
Bibliographic Details
Published in:Neuroscience 2011-12, Vol.197, p.107-120
Main Authors: Accorsi-Mendonça, D, Castania, J.A, Bonagamba, L.G.H, Machado, B.H, Leão, R.M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract The glomus cells in the carotid bodies (CB) detect alterations in pH and pCO2 and low pO2 level in arterial blood. The carotid sinus nerve conveys the information related to the oxygen level to 2nd-order neurons in the nucleus tractus solitarius (NTS) via tractus solitarius (TS), which is part of the chemoreflex pathways. It has been demonstrated that in 2nd-order NTS neurons receiving inputs from the aortic depressor nerve (ADN), the TS stimulation presents high temporal fidelity. However, the temporal properties of synaptic activity in NTS neurons receiving inputs from CB were not yet fully investigated. Herein using patch-clamp recordings in NTS brainstem slices, we studied TS-evoked excitatory postsynaptic currents (TS-eEPSCs) on morphologically identified 2nd-order NTS neurons that receive afferent inputs from the CB and compared with 2nd-order ADN-NTS neurons recorded in the same experimental conditions. The amplitudes of TS-eEPSCs were similar in both groups, but the latencies and standard deviation (SD) of latency were significantly higher in the CB-NTS neurons (latency: 4±0.2 ms, SD: 0.49±0.03 ms) than in ADN-NTS neurons (latency: 3.3±0.3 ms, SD: 0.19±0.02 ms; P =0.049 for latency and P
ISSN:0306-4522
1873-7544
DOI:10.1016/j.neuroscience.2011.08.054