Loading…

Asymmetric dimethylarginine (ADMA) determines the improvement of hepatic endothelial dysfunction by vitamin E in cirrhotic rats

s Background Hepatic endothelial dysfunction (HED), which is caused by decreased hepatic nitric oxide (NO) bioavailability and increased lipid peroxidation, contributes to portal hypertension, which is a characteristic of cirrhosis. Asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitr...

Full description

Saved in:
Bibliographic Details
Published in:Liver international 2012-01, Vol.32 (1), p.48-57
Main Authors: Yang, Ying-Ying, Lee, Tzung-Yan, Huang, Yi-Tsau, Chan, Che-Chang, Yeh, Yi-Chen, Lee, Fa-Yauh, Lee, Shou-Dong, Lin, Han-Chieh
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:s Background Hepatic endothelial dysfunction (HED), which is caused by decreased hepatic nitric oxide (NO) bioavailability and increased lipid peroxidation, contributes to portal hypertension, which is a characteristic of cirrhosis. Asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthase (NOS), is involved in cirrhosis‐related HED and portal hypertension. Aims We evaluated the effect of vitamin E treatment on the lipid peroxidation, HED and portal hypertension in cirrhotic rats. Methods The common bile duct ligation (BDL)‐induced cirrhotic rats were treated orally either with vehicle or with vitamin E for 1 month immediately after BDL. Systemic and portal haemodynamics, the magnitude of the increase in portal pressure induced by volume expansion, HED, oxidative stress, levels of ADMA, various proteins and mRNAs were then measured. Results In the vitamin E‐treated BDL rats, a decrease in portal pressure was associated with an attenuation of the increased portal pressure induced by volume expansion. In isolated and perfused BDL rat livers, the vitamin E treatment significantly inhibited the (paradoxical) vasoconstriction response to methoxamine and acetylcholine (HED), and this was abolished by the presence of NOS. Vitamin E decreased ADMA synthesizing enzyme PRMT1 expression and the level of thiobarbituric acid‐reactive substances (TBARS) in the liver, while increasing the levels of hepatic ADMA metabolizing enzyme DDAH2, eNOS, phosphor‐eNOS, ADMA level and superoxide dismutase activity. Conclusions The administration of vitamin E suppressed hepatic ADMA and oxidative stress in the cirrhotic liver circulation, and therefore increases NO bioavailability, which improved HED and portal hypertension.
ISSN:1478-3223
1478-3231
DOI:10.1111/j.1478-3231.2011.02651.x