Loading…

Criticality of adaptive control dynamics

We show, that stabilization of a dynamical system can annihilate observable information about its structure. This mechanism induces critical points as attractors in locally adaptive control. It also reveals, that previously reported criticality in simple controllers is caused by adaptation and not b...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2011-12, Vol.107 (23), p.238103-238103, Article 238103
Main Authors: Patzelt, Felix, Pawelzik, Klaus
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c363t-ba61d3a1082b6c80364dee8ca375f671a78c965f624f30b817e3f594ec4a03093
cites cdi_FETCH-LOGICAL-c363t-ba61d3a1082b6c80364dee8ca375f671a78c965f624f30b817e3f594ec4a03093
container_end_page 238103
container_issue 23
container_start_page 238103
container_title Physical review letters
container_volume 107
creator Patzelt, Felix
Pawelzik, Klaus
description We show, that stabilization of a dynamical system can annihilate observable information about its structure. This mechanism induces critical points as attractors in locally adaptive control. It also reveals, that previously reported criticality in simple controllers is caused by adaptation and not by other controller details. We apply these results to a real-system example: human balancing behavior. A model of predictive adaptive closed-loop control subject to some realistic constraints is introduced and shown to reproduce experimental observations in unprecedented detail. Our results suggests, that observed error distributions in between the Lévy and Gaussian regimes may reflect a nearly optimal compromise between the elimination of random local trends and rare large errors.
doi_str_mv 10.1103/PhysRevLett.107.238103
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_912273110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>912273110</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-ba61d3a1082b6c80364dee8ca375f671a78c965f624f30b817e3f594ec4a03093</originalsourceid><addsrcrecordid>eNpNkE9Lw0AQxRdRbK1-hZKbXlJndtLdzVGK_6CgiJ6XzWaDkaSpu5tCvr0preJpZh7vzYMfY3OEBSLQ7evnEN7cbu1iXCDIBSc1yidsOh55KhGzUzYFIExzADlhFyF8AQByoc7ZhHNUHAmm7Gbl61hb09RxSLoqMaXZxnrnEtttou-apBw2pq1tuGRnlWmCuzrOGft4uH9fPaXrl8fn1d06tSQopoURWJJBULwQVgGJrHROWUNyWQmJRiqbi3HlWUVQKJSOqmWeOZsZIMhpxq4Pf7e---5diLqtg3VNYzau64POkXNJewYzJg5O67sQvKv01tet8YNG0HuD_gdp1KQ-QBqD82NFX7Su_Iv9UqEfwPtkgw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912273110</pqid></control><display><type>article</type><title>Criticality of adaptive control dynamics</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Patzelt, Felix ; Pawelzik, Klaus</creator><creatorcontrib>Patzelt, Felix ; Pawelzik, Klaus</creatorcontrib><description>We show, that stabilization of a dynamical system can annihilate observable information about its structure. This mechanism induces critical points as attractors in locally adaptive control. It also reveals, that previously reported criticality in simple controllers is caused by adaptation and not by other controller details. We apply these results to a real-system example: human balancing behavior. A model of predictive adaptive closed-loop control subject to some realistic constraints is introduced and shown to reproduce experimental observations in unprecedented detail. Our results suggests, that observed error distributions in between the Lévy and Gaussian regimes may reflect a nearly optimal compromise between the elimination of random local trends and rare large errors.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.107.238103</identifier><identifier>PMID: 22182130</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review letters, 2011-12, Vol.107 (23), p.238103-238103, Article 238103</ispartof><rights>2011 American Physical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-ba61d3a1082b6c80364dee8ca375f671a78c965f624f30b817e3f594ec4a03093</citedby><cites>FETCH-LOGICAL-c363t-ba61d3a1082b6c80364dee8ca375f671a78c965f624f30b817e3f594ec4a03093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22182130$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Patzelt, Felix</creatorcontrib><creatorcontrib>Pawelzik, Klaus</creatorcontrib><title>Criticality of adaptive control dynamics</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We show, that stabilization of a dynamical system can annihilate observable information about its structure. This mechanism induces critical points as attractors in locally adaptive control. It also reveals, that previously reported criticality in simple controllers is caused by adaptation and not by other controller details. We apply these results to a real-system example: human balancing behavior. A model of predictive adaptive closed-loop control subject to some realistic constraints is introduced and shown to reproduce experimental observations in unprecedented detail. Our results suggests, that observed error distributions in between the Lévy and Gaussian regimes may reflect a nearly optimal compromise between the elimination of random local trends and rare large errors.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpNkE9Lw0AQxRdRbK1-hZKbXlJndtLdzVGK_6CgiJ6XzWaDkaSpu5tCvr0preJpZh7vzYMfY3OEBSLQ7evnEN7cbu1iXCDIBSc1yidsOh55KhGzUzYFIExzADlhFyF8AQByoc7ZhHNUHAmm7Gbl61hb09RxSLoqMaXZxnrnEtttou-apBw2pq1tuGRnlWmCuzrOGft4uH9fPaXrl8fn1d06tSQopoURWJJBULwQVgGJrHROWUNyWQmJRiqbi3HlWUVQKJSOqmWeOZsZIMhpxq4Pf7e---5diLqtg3VNYzau64POkXNJewYzJg5O67sQvKv01tet8YNG0HuD_gdp1KQ-QBqD82NFX7Su_Iv9UqEfwPtkgw</recordid><startdate>20111202</startdate><enddate>20111202</enddate><creator>Patzelt, Felix</creator><creator>Pawelzik, Klaus</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20111202</creationdate><title>Criticality of adaptive control dynamics</title><author>Patzelt, Felix ; Pawelzik, Klaus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-ba61d3a1082b6c80364dee8ca375f671a78c965f624f30b817e3f594ec4a03093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patzelt, Felix</creatorcontrib><creatorcontrib>Pawelzik, Klaus</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patzelt, Felix</au><au>Pawelzik, Klaus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Criticality of adaptive control dynamics</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2011-12-02</date><risdate>2011</risdate><volume>107</volume><issue>23</issue><spage>238103</spage><epage>238103</epage><pages>238103-238103</pages><artnum>238103</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We show, that stabilization of a dynamical system can annihilate observable information about its structure. This mechanism induces critical points as attractors in locally adaptive control. It also reveals, that previously reported criticality in simple controllers is caused by adaptation and not by other controller details. We apply these results to a real-system example: human balancing behavior. A model of predictive adaptive closed-loop control subject to some realistic constraints is introduced and shown to reproduce experimental observations in unprecedented detail. Our results suggests, that observed error distributions in between the Lévy and Gaussian regimes may reflect a nearly optimal compromise between the elimination of random local trends and rare large errors.</abstract><cop>United States</cop><pmid>22182130</pmid><doi>10.1103/PhysRevLett.107.238103</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2011-12, Vol.107 (23), p.238103-238103, Article 238103
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_912273110
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
title Criticality of adaptive control dynamics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A08%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Criticality%20of%20adaptive%20control%20dynamics&rft.jtitle=Physical%20review%20letters&rft.au=Patzelt,%20Felix&rft.date=2011-12-02&rft.volume=107&rft.issue=23&rft.spage=238103&rft.epage=238103&rft.pages=238103-238103&rft.artnum=238103&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.107.238103&rft_dat=%3Cproquest_cross%3E912273110%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-ba61d3a1082b6c80364dee8ca375f671a78c965f624f30b817e3f594ec4a03093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=912273110&rft_id=info:pmid/22182130&rfr_iscdi=true