Loading…
Evidence of Nanocrystalline Semiconducting Graphene Monoxide during Thermal Reduction of Graphene Oxide in Vacuum
As silicon-based electronics are reaching the nanosize limits of the semiconductor roadmap, carbon-based nanoelectronics has become a rapidly growing field, with great interest in tuning the properties of carbon-based materials. Chemical functionalization is a proposed route, but syntheses of graphe...
Saved in:
Published in: | ACS nano 2011-12, Vol.5 (12), p.9710-9717 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a347t-4d4d8f1a4eee7106586b874b3531171b45c1b5164e097dcd9435eb65943dbdc53 |
---|---|
cites | cdi_FETCH-LOGICAL-a347t-4d4d8f1a4eee7106586b874b3531171b45c1b5164e097dcd9435eb65943dbdc53 |
container_end_page | 9717 |
container_issue | 12 |
container_start_page | 9710 |
container_title | ACS nano |
container_volume | 5 |
creator | Mattson, Eric C Pu, Haihui Cui, Shumao Schofield, Marvin A Rhim, Sonny Lu, Ganhua Nasse, Michael J Ruoff, Rodney S Weinert, Michael Gajdardziska-Josifovska, Marija Chen, Junhong Hirschmugl, Carol J |
description | As silicon-based electronics are reaching the nanosize limits of the semiconductor roadmap, carbon-based nanoelectronics has become a rapidly growing field, with great interest in tuning the properties of carbon-based materials. Chemical functionalization is a proposed route, but syntheses of graphene oxide (G-O) produce disordered, nonstoichiometric materials with poor electronic properties. We report synthesis of an ordered, stoichiometric, solid-state carbon oxide that has never been observed in nature and coexists with graphene. Formation of this material, graphene monoxide (GMO), is achieved by annealing multilayered G-O. Our results indicate that the resulting thermally reduced G-O (TRG-O) consists of a two-dimensional nanocrystalline phase segregation: unoxidized graphitic regions are separated from highly oxidized regions of GMO. GMO has a quasi-hexagonal unit cell, an unusually high 1:1 O:C ratio, and a calculated direct band gap of ∼0.9 eV. |
doi_str_mv | 10.1021/nn203160n |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_912916337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>912916337</sourcerecordid><originalsourceid>FETCH-LOGICAL-a347t-4d4d8f1a4eee7106586b874b3531171b45c1b5164e097dcd9435eb65943dbdc53</originalsourceid><addsrcrecordid>eNp90b1OwzAUBWALgSgUBl4AZUHAUPCNYzsZEYKCVKjEn9gix76FoMQudoPg7XFp6YSYrmV_PsO5hOwBPQGawqm1KWUgqF0jW1AwMaC5eF5fnTn0yHYIb5RymUuxSXppSoucU9gi7xcftUGrMXGT5FZZp_1XmKmmqS0m99jW2lnT6VltX5KhV9NXjPc3zrrP-C0xnZ8_PLyib1WT3OEPdXYettLjH1rb5Enprmt3yMZENQF3l7NPHi8vHs6vBqPx8Pr8bDRQLJOzQWYyk09AZYgogQqeiyqXWcU4A5BQZVxDxUFkSAtptCkyxrESPE5TGc1ZnxwucqfevXcYZmVbB41Noyy6LpQFpAUIxmSUR_9KkCKlXMT6Ij1eUO1dCB4n5dTXrfJfJdByvotytYto95exXdWiWcnf8iM4WAClQ_nmOm9jH38EfQMjypCr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762056005</pqid></control><display><type>article</type><title>Evidence of Nanocrystalline Semiconducting Graphene Monoxide during Thermal Reduction of Graphene Oxide in Vacuum</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Mattson, Eric C ; Pu, Haihui ; Cui, Shumao ; Schofield, Marvin A ; Rhim, Sonny ; Lu, Ganhua ; Nasse, Michael J ; Ruoff, Rodney S ; Weinert, Michael ; Gajdardziska-Josifovska, Marija ; Chen, Junhong ; Hirschmugl, Carol J</creator><creatorcontrib>Mattson, Eric C ; Pu, Haihui ; Cui, Shumao ; Schofield, Marvin A ; Rhim, Sonny ; Lu, Ganhua ; Nasse, Michael J ; Ruoff, Rodney S ; Weinert, Michael ; Gajdardziska-Josifovska, Marija ; Chen, Junhong ; Hirschmugl, Carol J</creatorcontrib><description>As silicon-based electronics are reaching the nanosize limits of the semiconductor roadmap, carbon-based nanoelectronics has become a rapidly growing field, with great interest in tuning the properties of carbon-based materials. Chemical functionalization is a proposed route, but syntheses of graphene oxide (G-O) produce disordered, nonstoichiometric materials with poor electronic properties. We report synthesis of an ordered, stoichiometric, solid-state carbon oxide that has never been observed in nature and coexists with graphene. Formation of this material, graphene monoxide (GMO), is achieved by annealing multilayered G-O. Our results indicate that the resulting thermally reduced G-O (TRG-O) consists of a two-dimensional nanocrystalline phase segregation: unoxidized graphitic regions are separated from highly oxidized regions of GMO. GMO has a quasi-hexagonal unit cell, an unusually high 1:1 O:C ratio, and a calculated direct band gap of ∼0.9 eV.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/nn203160n</identifier><identifier>PMID: 22098501</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Crystallization - methods ; Electric Conductivity ; Electronics ; Graphene ; Graphite - chemistry ; Hot Temperature ; Macromolecular Substances - chemistry ; Materials Testing ; Molecular Conformation ; Nanocrystals ; Nanostructure ; Nanostructures - chemistry ; Nanostructures - ultrastructure ; Oxidation-Reduction ; Oxides ; Oxides - chemistry ; Particle Size ; Segregations ; Semiconductors ; Surface Properties ; Tuning ; Unit cell ; Vacuum</subject><ispartof>ACS nano, 2011-12, Vol.5 (12), p.9710-9717</ispartof><rights>Copyright © 2011 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a347t-4d4d8f1a4eee7106586b874b3531171b45c1b5164e097dcd9435eb65943dbdc53</citedby><cites>FETCH-LOGICAL-a347t-4d4d8f1a4eee7106586b874b3531171b45c1b5164e097dcd9435eb65943dbdc53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22098501$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mattson, Eric C</creatorcontrib><creatorcontrib>Pu, Haihui</creatorcontrib><creatorcontrib>Cui, Shumao</creatorcontrib><creatorcontrib>Schofield, Marvin A</creatorcontrib><creatorcontrib>Rhim, Sonny</creatorcontrib><creatorcontrib>Lu, Ganhua</creatorcontrib><creatorcontrib>Nasse, Michael J</creatorcontrib><creatorcontrib>Ruoff, Rodney S</creatorcontrib><creatorcontrib>Weinert, Michael</creatorcontrib><creatorcontrib>Gajdardziska-Josifovska, Marija</creatorcontrib><creatorcontrib>Chen, Junhong</creatorcontrib><creatorcontrib>Hirschmugl, Carol J</creatorcontrib><title>Evidence of Nanocrystalline Semiconducting Graphene Monoxide during Thermal Reduction of Graphene Oxide in Vacuum</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>As silicon-based electronics are reaching the nanosize limits of the semiconductor roadmap, carbon-based nanoelectronics has become a rapidly growing field, with great interest in tuning the properties of carbon-based materials. Chemical functionalization is a proposed route, but syntheses of graphene oxide (G-O) produce disordered, nonstoichiometric materials with poor electronic properties. We report synthesis of an ordered, stoichiometric, solid-state carbon oxide that has never been observed in nature and coexists with graphene. Formation of this material, graphene monoxide (GMO), is achieved by annealing multilayered G-O. Our results indicate that the resulting thermally reduced G-O (TRG-O) consists of a two-dimensional nanocrystalline phase segregation: unoxidized graphitic regions are separated from highly oxidized regions of GMO. GMO has a quasi-hexagonal unit cell, an unusually high 1:1 O:C ratio, and a calculated direct band gap of ∼0.9 eV.</description><subject>Crystallization - methods</subject><subject>Electric Conductivity</subject><subject>Electronics</subject><subject>Graphene</subject><subject>Graphite - chemistry</subject><subject>Hot Temperature</subject><subject>Macromolecular Substances - chemistry</subject><subject>Materials Testing</subject><subject>Molecular Conformation</subject><subject>Nanocrystals</subject><subject>Nanostructure</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - ultrastructure</subject><subject>Oxidation-Reduction</subject><subject>Oxides</subject><subject>Oxides - chemistry</subject><subject>Particle Size</subject><subject>Segregations</subject><subject>Semiconductors</subject><subject>Surface Properties</subject><subject>Tuning</subject><subject>Unit cell</subject><subject>Vacuum</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp90b1OwzAUBWALgSgUBl4AZUHAUPCNYzsZEYKCVKjEn9gix76FoMQudoPg7XFp6YSYrmV_PsO5hOwBPQGawqm1KWUgqF0jW1AwMaC5eF5fnTn0yHYIb5RymUuxSXppSoucU9gi7xcftUGrMXGT5FZZp_1XmKmmqS0m99jW2lnT6VltX5KhV9NXjPc3zrrP-C0xnZ8_PLyib1WT3OEPdXYettLjH1rb5Enprmt3yMZENQF3l7NPHi8vHs6vBqPx8Pr8bDRQLJOzQWYyk09AZYgogQqeiyqXWcU4A5BQZVxDxUFkSAtptCkyxrESPE5TGc1ZnxwucqfevXcYZmVbB41Noyy6LpQFpAUIxmSUR_9KkCKlXMT6Ij1eUO1dCB4n5dTXrfJfJdByvotytYto95exXdWiWcnf8iM4WAClQ_nmOm9jH38EfQMjypCr</recordid><startdate>20111227</startdate><enddate>20111227</enddate><creator>Mattson, Eric C</creator><creator>Pu, Haihui</creator><creator>Cui, Shumao</creator><creator>Schofield, Marvin A</creator><creator>Rhim, Sonny</creator><creator>Lu, Ganhua</creator><creator>Nasse, Michael J</creator><creator>Ruoff, Rodney S</creator><creator>Weinert, Michael</creator><creator>Gajdardziska-Josifovska, Marija</creator><creator>Chen, Junhong</creator><creator>Hirschmugl, Carol J</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20111227</creationdate><title>Evidence of Nanocrystalline Semiconducting Graphene Monoxide during Thermal Reduction of Graphene Oxide in Vacuum</title><author>Mattson, Eric C ; Pu, Haihui ; Cui, Shumao ; Schofield, Marvin A ; Rhim, Sonny ; Lu, Ganhua ; Nasse, Michael J ; Ruoff, Rodney S ; Weinert, Michael ; Gajdardziska-Josifovska, Marija ; Chen, Junhong ; Hirschmugl, Carol J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a347t-4d4d8f1a4eee7106586b874b3531171b45c1b5164e097dcd9435eb65943dbdc53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Crystallization - methods</topic><topic>Electric Conductivity</topic><topic>Electronics</topic><topic>Graphene</topic><topic>Graphite - chemistry</topic><topic>Hot Temperature</topic><topic>Macromolecular Substances - chemistry</topic><topic>Materials Testing</topic><topic>Molecular Conformation</topic><topic>Nanocrystals</topic><topic>Nanostructure</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - ultrastructure</topic><topic>Oxidation-Reduction</topic><topic>Oxides</topic><topic>Oxides - chemistry</topic><topic>Particle Size</topic><topic>Segregations</topic><topic>Semiconductors</topic><topic>Surface Properties</topic><topic>Tuning</topic><topic>Unit cell</topic><topic>Vacuum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mattson, Eric C</creatorcontrib><creatorcontrib>Pu, Haihui</creatorcontrib><creatorcontrib>Cui, Shumao</creatorcontrib><creatorcontrib>Schofield, Marvin A</creatorcontrib><creatorcontrib>Rhim, Sonny</creatorcontrib><creatorcontrib>Lu, Ganhua</creatorcontrib><creatorcontrib>Nasse, Michael J</creatorcontrib><creatorcontrib>Ruoff, Rodney S</creatorcontrib><creatorcontrib>Weinert, Michael</creatorcontrib><creatorcontrib>Gajdardziska-Josifovska, Marija</creatorcontrib><creatorcontrib>Chen, Junhong</creatorcontrib><creatorcontrib>Hirschmugl, Carol J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mattson, Eric C</au><au>Pu, Haihui</au><au>Cui, Shumao</au><au>Schofield, Marvin A</au><au>Rhim, Sonny</au><au>Lu, Ganhua</au><au>Nasse, Michael J</au><au>Ruoff, Rodney S</au><au>Weinert, Michael</au><au>Gajdardziska-Josifovska, Marija</au><au>Chen, Junhong</au><au>Hirschmugl, Carol J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evidence of Nanocrystalline Semiconducting Graphene Monoxide during Thermal Reduction of Graphene Oxide in Vacuum</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2011-12-27</date><risdate>2011</risdate><volume>5</volume><issue>12</issue><spage>9710</spage><epage>9717</epage><pages>9710-9717</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>As silicon-based electronics are reaching the nanosize limits of the semiconductor roadmap, carbon-based nanoelectronics has become a rapidly growing field, with great interest in tuning the properties of carbon-based materials. Chemical functionalization is a proposed route, but syntheses of graphene oxide (G-O) produce disordered, nonstoichiometric materials with poor electronic properties. We report synthesis of an ordered, stoichiometric, solid-state carbon oxide that has never been observed in nature and coexists with graphene. Formation of this material, graphene monoxide (GMO), is achieved by annealing multilayered G-O. Our results indicate that the resulting thermally reduced G-O (TRG-O) consists of a two-dimensional nanocrystalline phase segregation: unoxidized graphitic regions are separated from highly oxidized regions of GMO. GMO has a quasi-hexagonal unit cell, an unusually high 1:1 O:C ratio, and a calculated direct band gap of ∼0.9 eV.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>22098501</pmid><doi>10.1021/nn203160n</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2011-12, Vol.5 (12), p.9710-9717 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_proquest_miscellaneous_912916337 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Crystallization - methods Electric Conductivity Electronics Graphene Graphite - chemistry Hot Temperature Macromolecular Substances - chemistry Materials Testing Molecular Conformation Nanocrystals Nanostructure Nanostructures - chemistry Nanostructures - ultrastructure Oxidation-Reduction Oxides Oxides - chemistry Particle Size Segregations Semiconductors Surface Properties Tuning Unit cell Vacuum |
title | Evidence of Nanocrystalline Semiconducting Graphene Monoxide during Thermal Reduction of Graphene Oxide in Vacuum |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T23%3A20%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evidence%20of%20Nanocrystalline%20Semiconducting%20Graphene%20Monoxide%20during%20Thermal%20Reduction%20of%20Graphene%20Oxide%20in%20Vacuum&rft.jtitle=ACS%20nano&rft.au=Mattson,%20Eric%20C&rft.date=2011-12-27&rft.volume=5&rft.issue=12&rft.spage=9710&rft.epage=9717&rft.pages=9710-9717&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/nn203160n&rft_dat=%3Cproquest_cross%3E912916337%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a347t-4d4d8f1a4eee7106586b874b3531171b45c1b5164e097dcd9435eb65943dbdc53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1762056005&rft_id=info:pmid/22098501&rfr_iscdi=true |