Loading…
Age-related changes in two-pore domain acid-sensitive K+ channel expression in rat dorsal root ganglion neurons
Summary 1. Two‐pore domain K+ (K2P) channel expression influences brain development. The K2P channels, including two‐pore domain acid‐sensitive K+ (TASK) channels, contribute to the setting of the resting membrane potential of neurons. In addition to neurons in the brain, dorsal root ganglion (DRG)...
Saved in:
Published in: | Clinical and experimental pharmacology & physiology 2012-01, Vol.39 (1), p.43-48 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3544-67fc837f3c2ead3e0eca000ffc3368f42636cdaa156a878ab7e2a72e32219e4b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3544-67fc837f3c2ead3e0eca000ffc3368f42636cdaa156a878ab7e2a72e32219e4b3 |
container_end_page | 48 |
container_issue | 1 |
container_start_page | 43 |
container_title | Clinical and experimental pharmacology & physiology |
container_volume | 39 |
creator | Kim, Gyu-Tae Cho, Young-Woo Tak, Hyun-Min Lee, Jeong-Soon Kim, Eun-Jin Han, Jaehee Kang, Dawon |
description | Summary
1. Two‐pore domain K+ (K2P) channel expression influences brain development. The K2P channels, including two‐pore domain acid‐sensitive K+ (TASK) channels, contribute to the setting of the resting membrane potential of neurons. In addition to neurons in the brain, dorsal root ganglion (DRG) neurons also express K2P channels. The aim of the present study was to identify postnatal changes in the expression of TASK channels in DRG neurons.
2. Expression of TASK channels (TASK‐1, TASK‐2 and TASK‐3) was compared between neonatal (postnatal Day (P) 1 or P2) and adult (P120) rat DRG using semiquantitative polymerase chain reaction, western blot analysis, immunostaining and the patch‐clamp technique.
3. In adult (P120) rat DRG, expression of TASK‐2 mRNA and protein was downregulated, whereas TASK‐3 mRNA and protein expression was upregulated. There were no consistent changes in TASK‐1 mRNA and protein expression. Single‐channel recordings showed very low TASK‐2‐ and TASK‐3‐like channel expression in P1–P2 DRG neurons (∼10% in TASK‐2 and ∼3% in TASK‐3). In P120 DRG, there was a reduction in the detection of TASK‐2‐like channels, whereas the detection of TASK‐3‐like channels increased.
4. These results show that TASK‐2 and TASK‐3 mRNA and protein expression undergoes age‐related changes in DRG neurons, indicating that TASK‐2 and TASK‐3 channels are likely to contribute to the setting of the resting membrane potential of DRG neurons in neonates and adults, separately or together, during DRG development. |
doi_str_mv | 10.1111/j.1440-1681.2011.05634.x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_913719167</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1221141399</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3544-67fc837f3c2ead3e0eca000ffc3368f42636cdaa156a878ab7e2a72e32219e4b3</originalsourceid><addsrcrecordid>eNqNkUFv1DAQhS0EotvCX0C-gYQcPLFjJwcO1VIKaikgFcHN8jqTxUs2Xuxsu_33ON2yR4QvtjXve2PPI4QCLyCvN6sCpOQMVA1FyQEKXikhi90jMjsUHpMZF7xiUGt-RI5TWnHOK67EU3JUZkiDljMSTpfIIvZ2xJa6n3ZYYqJ-oONtYJsQkbZhbfPdOt-yhEPyo79BevH6XjxgT3G3iZiSD8PERTtmJCbb0xjCSJfZsZ9qA25jGNIz8qSzfcLnD_sJ-fb-7Hr-gV1-Pv84P71kTlRSMqU7VwvdCVeibQVydDY_v-ucEKruZKmEcq21UClb69ouNJZWlyjKEhqUC3FCXu59NzH83mIazdonh31vBwzbZBoQGhpQOitf_VMJ2RIkiKbJ0novdTGkFLEzm-jXNt4Z4GYKxqzMNH8zzd9MwZj7YMwuoy8eumwXa2wP4N8ksuDtXnDre7z7b2MzP_synTLP9rxPI-4OvI2_TP6krsz3q3PTXOurT1_f_TAX4g9kmqv0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1221141399</pqid></control><display><type>article</type><title>Age-related changes in two-pore domain acid-sensitive K+ channel expression in rat dorsal root ganglion neurons</title><source>EBSCOhost SPORTDiscus with Full Text</source><source>Wiley-Blackwell Read & Publish Collection</source><creator>Kim, Gyu-Tae ; Cho, Young-Woo ; Tak, Hyun-Min ; Lee, Jeong-Soon ; Kim, Eun-Jin ; Han, Jaehee ; Kang, Dawon</creator><creatorcontrib>Kim, Gyu-Tae ; Cho, Young-Woo ; Tak, Hyun-Min ; Lee, Jeong-Soon ; Kim, Eun-Jin ; Han, Jaehee ; Kang, Dawon</creatorcontrib><description>Summary
1. Two‐pore domain K+ (K2P) channel expression influences brain development. The K2P channels, including two‐pore domain acid‐sensitive K+ (TASK) channels, contribute to the setting of the resting membrane potential of neurons. In addition to neurons in the brain, dorsal root ganglion (DRG) neurons also express K2P channels. The aim of the present study was to identify postnatal changes in the expression of TASK channels in DRG neurons.
2. Expression of TASK channels (TASK‐1, TASK‐2 and TASK‐3) was compared between neonatal (postnatal Day (P) 1 or P2) and adult (P120) rat DRG using semiquantitative polymerase chain reaction, western blot analysis, immunostaining and the patch‐clamp technique.
3. In adult (P120) rat DRG, expression of TASK‐2 mRNA and protein was downregulated, whereas TASK‐3 mRNA and protein expression was upregulated. There were no consistent changes in TASK‐1 mRNA and protein expression. Single‐channel recordings showed very low TASK‐2‐ and TASK‐3‐like channel expression in P1–P2 DRG neurons (∼10% in TASK‐2 and ∼3% in TASK‐3). In P120 DRG, there was a reduction in the detection of TASK‐2‐like channels, whereas the detection of TASK‐3‐like channels increased.
4. These results show that TASK‐2 and TASK‐3 mRNA and protein expression undergoes age‐related changes in DRG neurons, indicating that TASK‐2 and TASK‐3 channels are likely to contribute to the setting of the resting membrane potential of DRG neurons in neonates and adults, separately or together, during DRG development.</description><identifier>ISSN: 0305-1870</identifier><identifier>EISSN: 1440-1681</identifier><identifier>DOI: 10.1111/j.1440-1681.2011.05634.x</identifier><identifier>PMID: 22017174</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Age ; ageing ; Aging - metabolism ; Animals ; Animals, Newborn ; Brain ; Cells, Cultured ; Cercopithecus aethiops ; COS Cells ; Development ; Dorsal root ganglia ; Ganglia, Spinal - cytology ; Ganglia, Spinal - growth & development ; Ganglia, Spinal - metabolism ; Gene expression ; Gene Expression Regulation, Developmental ; Membrane potential ; Membrane Potentials ; mRNA ; Neonates ; Nerve Tissue Proteins - genetics ; Nerve Tissue Proteins - metabolism ; Neurogenesis ; Neurons ; Neurons - cytology ; Neurons - metabolism ; Patch-Clamp Techniques ; Polymerase chain reaction ; Potassium ; potassium channel ; Potassium channels ; Potassium Channels, Tandem Pore Domain - genetics ; Potassium Channels, Tandem Pore Domain - metabolism ; Protein Isoforms - genetics ; Protein Isoforms - metabolism ; Rats ; Rats, Sprague-Dawley ; Recombinant Proteins - metabolism ; RNA, Messenger - metabolism ; Specific Pathogen-Free Organisms ; two-pore domain acid-sensitive K+ (TASK) protein ; Western blotting</subject><ispartof>Clinical and experimental pharmacology & physiology, 2012-01, Vol.39 (1), p.43-48</ispartof><rights>2011 The Authors. Clinical and Experimental Pharmacology and Physiology © 2011 Blackwell Publishing Asia Pty Ltd</rights><rights>2011 The Authors. Clinical and Experimental Pharmacology and Physiology © 2011 Blackwell Publishing Asia Pty Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3544-67fc837f3c2ead3e0eca000ffc3368f42636cdaa156a878ab7e2a72e32219e4b3</citedby><cites>FETCH-LOGICAL-c3544-67fc837f3c2ead3e0eca000ffc3368f42636cdaa156a878ab7e2a72e32219e4b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22017174$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Gyu-Tae</creatorcontrib><creatorcontrib>Cho, Young-Woo</creatorcontrib><creatorcontrib>Tak, Hyun-Min</creatorcontrib><creatorcontrib>Lee, Jeong-Soon</creatorcontrib><creatorcontrib>Kim, Eun-Jin</creatorcontrib><creatorcontrib>Han, Jaehee</creatorcontrib><creatorcontrib>Kang, Dawon</creatorcontrib><title>Age-related changes in two-pore domain acid-sensitive K+ channel expression in rat dorsal root ganglion neurons</title><title>Clinical and experimental pharmacology & physiology</title><addtitle>Clin Exp Pharmacol Physiol</addtitle><description>Summary
1. Two‐pore domain K+ (K2P) channel expression influences brain development. The K2P channels, including two‐pore domain acid‐sensitive K+ (TASK) channels, contribute to the setting of the resting membrane potential of neurons. In addition to neurons in the brain, dorsal root ganglion (DRG) neurons also express K2P channels. The aim of the present study was to identify postnatal changes in the expression of TASK channels in DRG neurons.
2. Expression of TASK channels (TASK‐1, TASK‐2 and TASK‐3) was compared between neonatal (postnatal Day (P) 1 or P2) and adult (P120) rat DRG using semiquantitative polymerase chain reaction, western blot analysis, immunostaining and the patch‐clamp technique.
3. In adult (P120) rat DRG, expression of TASK‐2 mRNA and protein was downregulated, whereas TASK‐3 mRNA and protein expression was upregulated. There were no consistent changes in TASK‐1 mRNA and protein expression. Single‐channel recordings showed very low TASK‐2‐ and TASK‐3‐like channel expression in P1–P2 DRG neurons (∼10% in TASK‐2 and ∼3% in TASK‐3). In P120 DRG, there was a reduction in the detection of TASK‐2‐like channels, whereas the detection of TASK‐3‐like channels increased.
4. These results show that TASK‐2 and TASK‐3 mRNA and protein expression undergoes age‐related changes in DRG neurons, indicating that TASK‐2 and TASK‐3 channels are likely to contribute to the setting of the resting membrane potential of DRG neurons in neonates and adults, separately or together, during DRG development.</description><subject>Age</subject><subject>ageing</subject><subject>Aging - metabolism</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Brain</subject><subject>Cells, Cultured</subject><subject>Cercopithecus aethiops</subject><subject>COS Cells</subject><subject>Development</subject><subject>Dorsal root ganglia</subject><subject>Ganglia, Spinal - cytology</subject><subject>Ganglia, Spinal - growth & development</subject><subject>Ganglia, Spinal - metabolism</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Membrane potential</subject><subject>Membrane Potentials</subject><subject>mRNA</subject><subject>Neonates</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Neurogenesis</subject><subject>Neurons</subject><subject>Neurons - cytology</subject><subject>Neurons - metabolism</subject><subject>Patch-Clamp Techniques</subject><subject>Polymerase chain reaction</subject><subject>Potassium</subject><subject>potassium channel</subject><subject>Potassium channels</subject><subject>Potassium Channels, Tandem Pore Domain - genetics</subject><subject>Potassium Channels, Tandem Pore Domain - metabolism</subject><subject>Protein Isoforms - genetics</subject><subject>Protein Isoforms - metabolism</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Recombinant Proteins - metabolism</subject><subject>RNA, Messenger - metabolism</subject><subject>Specific Pathogen-Free Organisms</subject><subject>two-pore domain acid-sensitive K+ (TASK) protein</subject><subject>Western blotting</subject><issn>0305-1870</issn><issn>1440-1681</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkUFv1DAQhS0EotvCX0C-gYQcPLFjJwcO1VIKaikgFcHN8jqTxUs2Xuxsu_33ON2yR4QvtjXve2PPI4QCLyCvN6sCpOQMVA1FyQEKXikhi90jMjsUHpMZF7xiUGt-RI5TWnHOK67EU3JUZkiDljMSTpfIIvZ2xJa6n3ZYYqJ-oONtYJsQkbZhbfPdOt-yhEPyo79BevH6XjxgT3G3iZiSD8PERTtmJCbb0xjCSJfZsZ9qA25jGNIz8qSzfcLnD_sJ-fb-7Hr-gV1-Pv84P71kTlRSMqU7VwvdCVeibQVydDY_v-ucEKruZKmEcq21UClb69ouNJZWlyjKEhqUC3FCXu59NzH83mIazdonh31vBwzbZBoQGhpQOitf_VMJ2RIkiKbJ0novdTGkFLEzm-jXNt4Z4GYKxqzMNH8zzd9MwZj7YMwuoy8eumwXa2wP4N8ksuDtXnDre7z7b2MzP_synTLP9rxPI-4OvI2_TP6krsz3q3PTXOurT1_f_TAX4g9kmqv0</recordid><startdate>201201</startdate><enddate>201201</enddate><creator>Kim, Gyu-Tae</creator><creator>Cho, Young-Woo</creator><creator>Tak, Hyun-Min</creator><creator>Lee, Jeong-Soon</creator><creator>Kim, Eun-Jin</creator><creator>Han, Jaehee</creator><creator>Kang, Dawon</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>201201</creationdate><title>Age-related changes in two-pore domain acid-sensitive K+ channel expression in rat dorsal root ganglion neurons</title><author>Kim, Gyu-Tae ; Cho, Young-Woo ; Tak, Hyun-Min ; Lee, Jeong-Soon ; Kim, Eun-Jin ; Han, Jaehee ; Kang, Dawon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3544-67fc837f3c2ead3e0eca000ffc3368f42636cdaa156a878ab7e2a72e32219e4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Age</topic><topic>ageing</topic><topic>Aging - metabolism</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Brain</topic><topic>Cells, Cultured</topic><topic>Cercopithecus aethiops</topic><topic>COS Cells</topic><topic>Development</topic><topic>Dorsal root ganglia</topic><topic>Ganglia, Spinal - cytology</topic><topic>Ganglia, Spinal - growth & development</topic><topic>Ganglia, Spinal - metabolism</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Membrane potential</topic><topic>Membrane Potentials</topic><topic>mRNA</topic><topic>Neonates</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Neurogenesis</topic><topic>Neurons</topic><topic>Neurons - cytology</topic><topic>Neurons - metabolism</topic><topic>Patch-Clamp Techniques</topic><topic>Polymerase chain reaction</topic><topic>Potassium</topic><topic>potassium channel</topic><topic>Potassium channels</topic><topic>Potassium Channels, Tandem Pore Domain - genetics</topic><topic>Potassium Channels, Tandem Pore Domain - metabolism</topic><topic>Protein Isoforms - genetics</topic><topic>Protein Isoforms - metabolism</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Recombinant Proteins - metabolism</topic><topic>RNA, Messenger - metabolism</topic><topic>Specific Pathogen-Free Organisms</topic><topic>two-pore domain acid-sensitive K+ (TASK) protein</topic><topic>Western blotting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Gyu-Tae</creatorcontrib><creatorcontrib>Cho, Young-Woo</creatorcontrib><creatorcontrib>Tak, Hyun-Min</creatorcontrib><creatorcontrib>Lee, Jeong-Soon</creatorcontrib><creatorcontrib>Kim, Eun-Jin</creatorcontrib><creatorcontrib>Han, Jaehee</creatorcontrib><creatorcontrib>Kang, Dawon</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Clinical and experimental pharmacology & physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Gyu-Tae</au><au>Cho, Young-Woo</au><au>Tak, Hyun-Min</au><au>Lee, Jeong-Soon</au><au>Kim, Eun-Jin</au><au>Han, Jaehee</au><au>Kang, Dawon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Age-related changes in two-pore domain acid-sensitive K+ channel expression in rat dorsal root ganglion neurons</atitle><jtitle>Clinical and experimental pharmacology & physiology</jtitle><addtitle>Clin Exp Pharmacol Physiol</addtitle><date>2012-01</date><risdate>2012</risdate><volume>39</volume><issue>1</issue><spage>43</spage><epage>48</epage><pages>43-48</pages><issn>0305-1870</issn><eissn>1440-1681</eissn><abstract>Summary
1. Two‐pore domain K+ (K2P) channel expression influences brain development. The K2P channels, including two‐pore domain acid‐sensitive K+ (TASK) channels, contribute to the setting of the resting membrane potential of neurons. In addition to neurons in the brain, dorsal root ganglion (DRG) neurons also express K2P channels. The aim of the present study was to identify postnatal changes in the expression of TASK channels in DRG neurons.
2. Expression of TASK channels (TASK‐1, TASK‐2 and TASK‐3) was compared between neonatal (postnatal Day (P) 1 or P2) and adult (P120) rat DRG using semiquantitative polymerase chain reaction, western blot analysis, immunostaining and the patch‐clamp technique.
3. In adult (P120) rat DRG, expression of TASK‐2 mRNA and protein was downregulated, whereas TASK‐3 mRNA and protein expression was upregulated. There were no consistent changes in TASK‐1 mRNA and protein expression. Single‐channel recordings showed very low TASK‐2‐ and TASK‐3‐like channel expression in P1–P2 DRG neurons (∼10% in TASK‐2 and ∼3% in TASK‐3). In P120 DRG, there was a reduction in the detection of TASK‐2‐like channels, whereas the detection of TASK‐3‐like channels increased.
4. These results show that TASK‐2 and TASK‐3 mRNA and protein expression undergoes age‐related changes in DRG neurons, indicating that TASK‐2 and TASK‐3 channels are likely to contribute to the setting of the resting membrane potential of DRG neurons in neonates and adults, separately or together, during DRG development.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>22017174</pmid><doi>10.1111/j.1440-1681.2011.05634.x</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-1870 |
ispartof | Clinical and experimental pharmacology & physiology, 2012-01, Vol.39 (1), p.43-48 |
issn | 0305-1870 1440-1681 |
language | eng |
recordid | cdi_proquest_miscellaneous_913719167 |
source | EBSCOhost SPORTDiscus with Full Text; Wiley-Blackwell Read & Publish Collection |
subjects | Age ageing Aging - metabolism Animals Animals, Newborn Brain Cells, Cultured Cercopithecus aethiops COS Cells Development Dorsal root ganglia Ganglia, Spinal - cytology Ganglia, Spinal - growth & development Ganglia, Spinal - metabolism Gene expression Gene Expression Regulation, Developmental Membrane potential Membrane Potentials mRNA Neonates Nerve Tissue Proteins - genetics Nerve Tissue Proteins - metabolism Neurogenesis Neurons Neurons - cytology Neurons - metabolism Patch-Clamp Techniques Polymerase chain reaction Potassium potassium channel Potassium channels Potassium Channels, Tandem Pore Domain - genetics Potassium Channels, Tandem Pore Domain - metabolism Protein Isoforms - genetics Protein Isoforms - metabolism Rats Rats, Sprague-Dawley Recombinant Proteins - metabolism RNA, Messenger - metabolism Specific Pathogen-Free Organisms two-pore domain acid-sensitive K+ (TASK) protein Western blotting |
title | Age-related changes in two-pore domain acid-sensitive K+ channel expression in rat dorsal root ganglion neurons |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T23%3A27%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Age-related%20changes%20in%20two-pore%20domain%20acid-sensitive%20K+%20channel%20expression%20in%20rat%20dorsal%20root%20ganglion%20neurons&rft.jtitle=Clinical%20and%20experimental%20pharmacology%20&%20physiology&rft.au=Kim,%20Gyu-Tae&rft.date=2012-01&rft.volume=39&rft.issue=1&rft.spage=43&rft.epage=48&rft.pages=43-48&rft.issn=0305-1870&rft.eissn=1440-1681&rft_id=info:doi/10.1111/j.1440-1681.2011.05634.x&rft_dat=%3Cproquest_cross%3E1221141399%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3544-67fc837f3c2ead3e0eca000ffc3368f42636cdaa156a878ab7e2a72e32219e4b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1221141399&rft_id=info:pmid/22017174&rfr_iscdi=true |