Loading…

Age-related changes in two-pore domain acid-sensitive K+ channel expression in rat dorsal root ganglion neurons

Summary 1. Two‐pore domain K+ (K2P) channel expression influences brain development. The K2P channels, including two‐pore domain acid‐sensitive K+ (TASK) channels, contribute to the setting of the resting membrane potential of neurons. In addition to neurons in the brain, dorsal root ganglion (DRG)...

Full description

Saved in:
Bibliographic Details
Published in:Clinical and experimental pharmacology & physiology 2012-01, Vol.39 (1), p.43-48
Main Authors: Kim, Gyu-Tae, Cho, Young-Woo, Tak, Hyun-Min, Lee, Jeong-Soon, Kim, Eun-Jin, Han, Jaehee, Kang, Dawon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3544-67fc837f3c2ead3e0eca000ffc3368f42636cdaa156a878ab7e2a72e32219e4b3
cites cdi_FETCH-LOGICAL-c3544-67fc837f3c2ead3e0eca000ffc3368f42636cdaa156a878ab7e2a72e32219e4b3
container_end_page 48
container_issue 1
container_start_page 43
container_title Clinical and experimental pharmacology & physiology
container_volume 39
creator Kim, Gyu-Tae
Cho, Young-Woo
Tak, Hyun-Min
Lee, Jeong-Soon
Kim, Eun-Jin
Han, Jaehee
Kang, Dawon
description Summary 1. Two‐pore domain K+ (K2P) channel expression influences brain development. The K2P channels, including two‐pore domain acid‐sensitive K+ (TASK) channels, contribute to the setting of the resting membrane potential of neurons. In addition to neurons in the brain, dorsal root ganglion (DRG) neurons also express K2P channels. The aim of the present study was to identify postnatal changes in the expression of TASK channels in DRG neurons. 2. Expression of TASK channels (TASK‐1, TASK‐2 and TASK‐3) was compared between neonatal (postnatal Day (P) 1 or P2) and adult (P120) rat DRG using semiquantitative polymerase chain reaction, western blot analysis, immunostaining and the patch‐clamp technique. 3. In adult (P120) rat DRG, expression of TASK‐2 mRNA and protein was downregulated, whereas TASK‐3 mRNA and protein expression was upregulated. There were no consistent changes in TASK‐1 mRNA and protein expression. Single‐channel recordings showed very low TASK‐2‐ and TASK‐3‐like channel expression in P1–P2 DRG neurons (∼10% in TASK‐2 and ∼3% in TASK‐3). In P120 DRG, there was a reduction in the detection of TASK‐2‐like channels, whereas the detection of TASK‐3‐like channels increased. 4. These results show that TASK‐2 and TASK‐3 mRNA and protein expression undergoes age‐related changes in DRG neurons, indicating that TASK‐2 and TASK‐3 channels are likely to contribute to the setting of the resting membrane potential of DRG neurons in neonates and adults, separately or together, during DRG development.
doi_str_mv 10.1111/j.1440-1681.2011.05634.x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_913719167</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1221141399</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3544-67fc837f3c2ead3e0eca000ffc3368f42636cdaa156a878ab7e2a72e32219e4b3</originalsourceid><addsrcrecordid>eNqNkUFv1DAQhS0EotvCX0C-gYQcPLFjJwcO1VIKaikgFcHN8jqTxUs2Xuxsu_33ON2yR4QvtjXve2PPI4QCLyCvN6sCpOQMVA1FyQEKXikhi90jMjsUHpMZF7xiUGt-RI5TWnHOK67EU3JUZkiDljMSTpfIIvZ2xJa6n3ZYYqJ-oONtYJsQkbZhbfPdOt-yhEPyo79BevH6XjxgT3G3iZiSD8PERTtmJCbb0xjCSJfZsZ9qA25jGNIz8qSzfcLnD_sJ-fb-7Hr-gV1-Pv84P71kTlRSMqU7VwvdCVeibQVydDY_v-ucEKruZKmEcq21UClb69ouNJZWlyjKEhqUC3FCXu59NzH83mIazdonh31vBwzbZBoQGhpQOitf_VMJ2RIkiKbJ0novdTGkFLEzm-jXNt4Z4GYKxqzMNH8zzd9MwZj7YMwuoy8eumwXa2wP4N8ksuDtXnDre7z7b2MzP_synTLP9rxPI-4OvI2_TP6krsz3q3PTXOurT1_f_TAX4g9kmqv0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1221141399</pqid></control><display><type>article</type><title>Age-related changes in two-pore domain acid-sensitive K+ channel expression in rat dorsal root ganglion neurons</title><source>EBSCOhost SPORTDiscus with Full Text</source><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Kim, Gyu-Tae ; Cho, Young-Woo ; Tak, Hyun-Min ; Lee, Jeong-Soon ; Kim, Eun-Jin ; Han, Jaehee ; Kang, Dawon</creator><creatorcontrib>Kim, Gyu-Tae ; Cho, Young-Woo ; Tak, Hyun-Min ; Lee, Jeong-Soon ; Kim, Eun-Jin ; Han, Jaehee ; Kang, Dawon</creatorcontrib><description>Summary 1. Two‐pore domain K+ (K2P) channel expression influences brain development. The K2P channels, including two‐pore domain acid‐sensitive K+ (TASK) channels, contribute to the setting of the resting membrane potential of neurons. In addition to neurons in the brain, dorsal root ganglion (DRG) neurons also express K2P channels. The aim of the present study was to identify postnatal changes in the expression of TASK channels in DRG neurons. 2. Expression of TASK channels (TASK‐1, TASK‐2 and TASK‐3) was compared between neonatal (postnatal Day (P) 1 or P2) and adult (P120) rat DRG using semiquantitative polymerase chain reaction, western blot analysis, immunostaining and the patch‐clamp technique. 3. In adult (P120) rat DRG, expression of TASK‐2 mRNA and protein was downregulated, whereas TASK‐3 mRNA and protein expression was upregulated. There were no consistent changes in TASK‐1 mRNA and protein expression. Single‐channel recordings showed very low TASK‐2‐ and TASK‐3‐like channel expression in P1–P2 DRG neurons (∼10% in TASK‐2 and ∼3% in TASK‐3). In P120 DRG, there was a reduction in the detection of TASK‐2‐like channels, whereas the detection of TASK‐3‐like channels increased. 4. These results show that TASK‐2 and TASK‐3 mRNA and protein expression undergoes age‐related changes in DRG neurons, indicating that TASK‐2 and TASK‐3 channels are likely to contribute to the setting of the resting membrane potential of DRG neurons in neonates and adults, separately or together, during DRG development.</description><identifier>ISSN: 0305-1870</identifier><identifier>EISSN: 1440-1681</identifier><identifier>DOI: 10.1111/j.1440-1681.2011.05634.x</identifier><identifier>PMID: 22017174</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Age ; ageing ; Aging - metabolism ; Animals ; Animals, Newborn ; Brain ; Cells, Cultured ; Cercopithecus aethiops ; COS Cells ; Development ; Dorsal root ganglia ; Ganglia, Spinal - cytology ; Ganglia, Spinal - growth &amp; development ; Ganglia, Spinal - metabolism ; Gene expression ; Gene Expression Regulation, Developmental ; Membrane potential ; Membrane Potentials ; mRNA ; Neonates ; Nerve Tissue Proteins - genetics ; Nerve Tissue Proteins - metabolism ; Neurogenesis ; Neurons ; Neurons - cytology ; Neurons - metabolism ; Patch-Clamp Techniques ; Polymerase chain reaction ; Potassium ; potassium channel ; Potassium channels ; Potassium Channels, Tandem Pore Domain - genetics ; Potassium Channels, Tandem Pore Domain - metabolism ; Protein Isoforms - genetics ; Protein Isoforms - metabolism ; Rats ; Rats, Sprague-Dawley ; Recombinant Proteins - metabolism ; RNA, Messenger - metabolism ; Specific Pathogen-Free Organisms ; two-pore domain acid-sensitive K+ (TASK) protein ; Western blotting</subject><ispartof>Clinical and experimental pharmacology &amp; physiology, 2012-01, Vol.39 (1), p.43-48</ispartof><rights>2011 The Authors. Clinical and Experimental Pharmacology and Physiology © 2011 Blackwell Publishing Asia Pty Ltd</rights><rights>2011 The Authors. Clinical and Experimental Pharmacology and Physiology © 2011 Blackwell Publishing Asia Pty Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3544-67fc837f3c2ead3e0eca000ffc3368f42636cdaa156a878ab7e2a72e32219e4b3</citedby><cites>FETCH-LOGICAL-c3544-67fc837f3c2ead3e0eca000ffc3368f42636cdaa156a878ab7e2a72e32219e4b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22017174$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Gyu-Tae</creatorcontrib><creatorcontrib>Cho, Young-Woo</creatorcontrib><creatorcontrib>Tak, Hyun-Min</creatorcontrib><creatorcontrib>Lee, Jeong-Soon</creatorcontrib><creatorcontrib>Kim, Eun-Jin</creatorcontrib><creatorcontrib>Han, Jaehee</creatorcontrib><creatorcontrib>Kang, Dawon</creatorcontrib><title>Age-related changes in two-pore domain acid-sensitive K+ channel expression in rat dorsal root ganglion neurons</title><title>Clinical and experimental pharmacology &amp; physiology</title><addtitle>Clin Exp Pharmacol Physiol</addtitle><description>Summary 1. Two‐pore domain K+ (K2P) channel expression influences brain development. The K2P channels, including two‐pore domain acid‐sensitive K+ (TASK) channels, contribute to the setting of the resting membrane potential of neurons. In addition to neurons in the brain, dorsal root ganglion (DRG) neurons also express K2P channels. The aim of the present study was to identify postnatal changes in the expression of TASK channels in DRG neurons. 2. Expression of TASK channels (TASK‐1, TASK‐2 and TASK‐3) was compared between neonatal (postnatal Day (P) 1 or P2) and adult (P120) rat DRG using semiquantitative polymerase chain reaction, western blot analysis, immunostaining and the patch‐clamp technique. 3. In adult (P120) rat DRG, expression of TASK‐2 mRNA and protein was downregulated, whereas TASK‐3 mRNA and protein expression was upregulated. There were no consistent changes in TASK‐1 mRNA and protein expression. Single‐channel recordings showed very low TASK‐2‐ and TASK‐3‐like channel expression in P1–P2 DRG neurons (∼10% in TASK‐2 and ∼3% in TASK‐3). In P120 DRG, there was a reduction in the detection of TASK‐2‐like channels, whereas the detection of TASK‐3‐like channels increased. 4. These results show that TASK‐2 and TASK‐3 mRNA and protein expression undergoes age‐related changes in DRG neurons, indicating that TASK‐2 and TASK‐3 channels are likely to contribute to the setting of the resting membrane potential of DRG neurons in neonates and adults, separately or together, during DRG development.</description><subject>Age</subject><subject>ageing</subject><subject>Aging - metabolism</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Brain</subject><subject>Cells, Cultured</subject><subject>Cercopithecus aethiops</subject><subject>COS Cells</subject><subject>Development</subject><subject>Dorsal root ganglia</subject><subject>Ganglia, Spinal - cytology</subject><subject>Ganglia, Spinal - growth &amp; development</subject><subject>Ganglia, Spinal - metabolism</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Membrane potential</subject><subject>Membrane Potentials</subject><subject>mRNA</subject><subject>Neonates</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Neurogenesis</subject><subject>Neurons</subject><subject>Neurons - cytology</subject><subject>Neurons - metabolism</subject><subject>Patch-Clamp Techniques</subject><subject>Polymerase chain reaction</subject><subject>Potassium</subject><subject>potassium channel</subject><subject>Potassium channels</subject><subject>Potassium Channels, Tandem Pore Domain - genetics</subject><subject>Potassium Channels, Tandem Pore Domain - metabolism</subject><subject>Protein Isoforms - genetics</subject><subject>Protein Isoforms - metabolism</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Recombinant Proteins - metabolism</subject><subject>RNA, Messenger - metabolism</subject><subject>Specific Pathogen-Free Organisms</subject><subject>two-pore domain acid-sensitive K+ (TASK) protein</subject><subject>Western blotting</subject><issn>0305-1870</issn><issn>1440-1681</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkUFv1DAQhS0EotvCX0C-gYQcPLFjJwcO1VIKaikgFcHN8jqTxUs2Xuxsu_33ON2yR4QvtjXve2PPI4QCLyCvN6sCpOQMVA1FyQEKXikhi90jMjsUHpMZF7xiUGt-RI5TWnHOK67EU3JUZkiDljMSTpfIIvZ2xJa6n3ZYYqJ-oONtYJsQkbZhbfPdOt-yhEPyo79BevH6XjxgT3G3iZiSD8PERTtmJCbb0xjCSJfZsZ9qA25jGNIz8qSzfcLnD_sJ-fb-7Hr-gV1-Pv84P71kTlRSMqU7VwvdCVeibQVydDY_v-ucEKruZKmEcq21UClb69ouNJZWlyjKEhqUC3FCXu59NzH83mIazdonh31vBwzbZBoQGhpQOitf_VMJ2RIkiKbJ0novdTGkFLEzm-jXNt4Z4GYKxqzMNH8zzd9MwZj7YMwuoy8eumwXa2wP4N8ksuDtXnDre7z7b2MzP_synTLP9rxPI-4OvI2_TP6krsz3q3PTXOurT1_f_TAX4g9kmqv0</recordid><startdate>201201</startdate><enddate>201201</enddate><creator>Kim, Gyu-Tae</creator><creator>Cho, Young-Woo</creator><creator>Tak, Hyun-Min</creator><creator>Lee, Jeong-Soon</creator><creator>Kim, Eun-Jin</creator><creator>Han, Jaehee</creator><creator>Kang, Dawon</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>201201</creationdate><title>Age-related changes in two-pore domain acid-sensitive K+ channel expression in rat dorsal root ganglion neurons</title><author>Kim, Gyu-Tae ; Cho, Young-Woo ; Tak, Hyun-Min ; Lee, Jeong-Soon ; Kim, Eun-Jin ; Han, Jaehee ; Kang, Dawon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3544-67fc837f3c2ead3e0eca000ffc3368f42636cdaa156a878ab7e2a72e32219e4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Age</topic><topic>ageing</topic><topic>Aging - metabolism</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Brain</topic><topic>Cells, Cultured</topic><topic>Cercopithecus aethiops</topic><topic>COS Cells</topic><topic>Development</topic><topic>Dorsal root ganglia</topic><topic>Ganglia, Spinal - cytology</topic><topic>Ganglia, Spinal - growth &amp; development</topic><topic>Ganglia, Spinal - metabolism</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Membrane potential</topic><topic>Membrane Potentials</topic><topic>mRNA</topic><topic>Neonates</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Neurogenesis</topic><topic>Neurons</topic><topic>Neurons - cytology</topic><topic>Neurons - metabolism</topic><topic>Patch-Clamp Techniques</topic><topic>Polymerase chain reaction</topic><topic>Potassium</topic><topic>potassium channel</topic><topic>Potassium channels</topic><topic>Potassium Channels, Tandem Pore Domain - genetics</topic><topic>Potassium Channels, Tandem Pore Domain - metabolism</topic><topic>Protein Isoforms - genetics</topic><topic>Protein Isoforms - metabolism</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Recombinant Proteins - metabolism</topic><topic>RNA, Messenger - metabolism</topic><topic>Specific Pathogen-Free Organisms</topic><topic>two-pore domain acid-sensitive K+ (TASK) protein</topic><topic>Western blotting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Gyu-Tae</creatorcontrib><creatorcontrib>Cho, Young-Woo</creatorcontrib><creatorcontrib>Tak, Hyun-Min</creatorcontrib><creatorcontrib>Lee, Jeong-Soon</creatorcontrib><creatorcontrib>Kim, Eun-Jin</creatorcontrib><creatorcontrib>Han, Jaehee</creatorcontrib><creatorcontrib>Kang, Dawon</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Clinical and experimental pharmacology &amp; physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Gyu-Tae</au><au>Cho, Young-Woo</au><au>Tak, Hyun-Min</au><au>Lee, Jeong-Soon</au><au>Kim, Eun-Jin</au><au>Han, Jaehee</au><au>Kang, Dawon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Age-related changes in two-pore domain acid-sensitive K+ channel expression in rat dorsal root ganglion neurons</atitle><jtitle>Clinical and experimental pharmacology &amp; physiology</jtitle><addtitle>Clin Exp Pharmacol Physiol</addtitle><date>2012-01</date><risdate>2012</risdate><volume>39</volume><issue>1</issue><spage>43</spage><epage>48</epage><pages>43-48</pages><issn>0305-1870</issn><eissn>1440-1681</eissn><abstract>Summary 1. Two‐pore domain K+ (K2P) channel expression influences brain development. The K2P channels, including two‐pore domain acid‐sensitive K+ (TASK) channels, contribute to the setting of the resting membrane potential of neurons. In addition to neurons in the brain, dorsal root ganglion (DRG) neurons also express K2P channels. The aim of the present study was to identify postnatal changes in the expression of TASK channels in DRG neurons. 2. Expression of TASK channels (TASK‐1, TASK‐2 and TASK‐3) was compared between neonatal (postnatal Day (P) 1 or P2) and adult (P120) rat DRG using semiquantitative polymerase chain reaction, western blot analysis, immunostaining and the patch‐clamp technique. 3. In adult (P120) rat DRG, expression of TASK‐2 mRNA and protein was downregulated, whereas TASK‐3 mRNA and protein expression was upregulated. There were no consistent changes in TASK‐1 mRNA and protein expression. Single‐channel recordings showed very low TASK‐2‐ and TASK‐3‐like channel expression in P1–P2 DRG neurons (∼10% in TASK‐2 and ∼3% in TASK‐3). In P120 DRG, there was a reduction in the detection of TASK‐2‐like channels, whereas the detection of TASK‐3‐like channels increased. 4. These results show that TASK‐2 and TASK‐3 mRNA and protein expression undergoes age‐related changes in DRG neurons, indicating that TASK‐2 and TASK‐3 channels are likely to contribute to the setting of the resting membrane potential of DRG neurons in neonates and adults, separately or together, during DRG development.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>22017174</pmid><doi>10.1111/j.1440-1681.2011.05634.x</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0305-1870
ispartof Clinical and experimental pharmacology & physiology, 2012-01, Vol.39 (1), p.43-48
issn 0305-1870
1440-1681
language eng
recordid cdi_proquest_miscellaneous_913719167
source EBSCOhost SPORTDiscus with Full Text; Wiley-Blackwell Read & Publish Collection
subjects Age
ageing
Aging - metabolism
Animals
Animals, Newborn
Brain
Cells, Cultured
Cercopithecus aethiops
COS Cells
Development
Dorsal root ganglia
Ganglia, Spinal - cytology
Ganglia, Spinal - growth & development
Ganglia, Spinal - metabolism
Gene expression
Gene Expression Regulation, Developmental
Membrane potential
Membrane Potentials
mRNA
Neonates
Nerve Tissue Proteins - genetics
Nerve Tissue Proteins - metabolism
Neurogenesis
Neurons
Neurons - cytology
Neurons - metabolism
Patch-Clamp Techniques
Polymerase chain reaction
Potassium
potassium channel
Potassium channels
Potassium Channels, Tandem Pore Domain - genetics
Potassium Channels, Tandem Pore Domain - metabolism
Protein Isoforms - genetics
Protein Isoforms - metabolism
Rats
Rats, Sprague-Dawley
Recombinant Proteins - metabolism
RNA, Messenger - metabolism
Specific Pathogen-Free Organisms
two-pore domain acid-sensitive K+ (TASK) protein
Western blotting
title Age-related changes in two-pore domain acid-sensitive K+ channel expression in rat dorsal root ganglion neurons
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T23%3A27%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Age-related%20changes%20in%20two-pore%20domain%20acid-sensitive%20K+%20channel%20expression%20in%20rat%20dorsal%20root%20ganglion%20neurons&rft.jtitle=Clinical%20and%20experimental%20pharmacology%20&%20physiology&rft.au=Kim,%20Gyu-Tae&rft.date=2012-01&rft.volume=39&rft.issue=1&rft.spage=43&rft.epage=48&rft.pages=43-48&rft.issn=0305-1870&rft.eissn=1440-1681&rft_id=info:doi/10.1111/j.1440-1681.2011.05634.x&rft_dat=%3Cproquest_cross%3E1221141399%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3544-67fc837f3c2ead3e0eca000ffc3368f42636cdaa156a878ab7e2a72e32219e4b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1221141399&rft_id=info:pmid/22017174&rfr_iscdi=true