Loading…
Effect of the Compositional Strain on the Diffusive Interface Thickness and on the Phase Transformation in a Phase-Field Model for Binary Alloys
A Cahn-Hilliard phase-field—elasticity model was used to study the effect of compositional strain on the diffusive interface thickness and on the solid state phase transformations in binary alloys. Compositional strain was introduced using the Vegard’s law. Mixed order finite element analyses and an...
Saved in:
Published in: | Journal of phase equilibria and diffusion 2011-08, Vol.32 (4), p.302-308 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A Cahn-Hilliard phase-field—elasticity model was used to study the effect of compositional strain on the diffusive interface thickness and on the solid state phase transformations in binary alloys. Compositional strain was introduced using the Vegard’s law. Mixed order finite element analyses and analytical solutions of an infinite diffusion couple with a flat interface were used to track the phase-field interface morphology. Both analytical and numerical calculations showed a substantial rate-increasing effect of compositional strain on the interface thickness, especially for low energy barrier values. Compositional strain was found to cause substantial patterning of single precipitates during their evolution in a parent matrix and significantly change the equilibrium size of the precipitates. Results show a considerable influence of compositional strain on the coarsening kinetics of coherent precipitates. |
---|---|
ISSN: | 1547-7037 1863-7345 1934-7243 |
DOI: | 10.1007/s11669-011-9905-y |