Loading…

Nonlinear dynamic analysis of a V-shaped microcantilever of an atomic force microscope

This paper is devoted to investigate the nonlinear behaviors of a V-shaped microcantilever of an atomic force microscope (AFM) operating in its two major modes: amplitude modulation and frequency modulation. The nonlinear behavior of the AFM is due to the nonlinear nature of the AFM tip–sample inter...

Full description

Saved in:
Bibliographic Details
Published in:Applied mathematical modelling 2011-12, Vol.35 (12), p.5903-5919
Main Authors: Kahrobaiyan, M.H., Rahaeifard, M., Ahmadian, M.T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c402t-a129728d3514a4f393d7079c1b5ca576777b4fd86ffc6758371128753493a07b3
cites cdi_FETCH-LOGICAL-c402t-a129728d3514a4f393d7079c1b5ca576777b4fd86ffc6758371128753493a07b3
container_end_page 5919
container_issue 12
container_start_page 5903
container_title Applied mathematical modelling
container_volume 35
creator Kahrobaiyan, M.H.
Rahaeifard, M.
Ahmadian, M.T.
description This paper is devoted to investigate the nonlinear behaviors of a V-shaped microcantilever of an atomic force microscope (AFM) operating in its two major modes: amplitude modulation and frequency modulation. The nonlinear behavior of the AFM is due to the nonlinear nature of the AFM tip–sample interaction caused by the Van der Waals attraction/repulsion force. Considering the V-shaped microcantilever as a flexible continuous system, the resonant frequencies, mode shapes, governing nonlinear partial and ordinary differential equations (PDE and ODE) of motion, boundary conditions, frequency and time responses, potential function and phase-plane of the system are obtained analytically. The governing PDE is determined by employing the Hamilton principle. Subsequently, the Galerkin method is utilized to gain the governing nonlinear ODE. Afterward, the resulting ODE is analytically solved by means of some perturbation techniques including the method of multiple scales and the Lindsted–Poincare method. In addition, the effects of different parameters including geometrical one on the frequency response of the system are assessed.
doi_str_mv 10.1016/j.apm.2011.05.039
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_914629069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0307904X11003507</els_id><sourcerecordid>914629069</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-a129728d3514a4f393d7079c1b5ca576777b4fd86ffc6758371128753493a07b3</originalsourceid><addsrcrecordid>eNp9kD9PwzAQxTOARCl8ALYsiCnhHDtxLCZU8U-qYIGKzbo6tnCV2sFOK_Xbk5CKkel0ut97d_eS5IpAToBUt5scu21eACE5lDlQcZLMgALPBLDPs-Q8xg0AlEM3S1av3rXWaQxpc3C4tSpFh-0h2ph6k2K6yuIXdrpJh1HwCl1vW73X4XfqUuz9qDE-KD0hUflOXySnBtuoL491nnw8PrwvnrPl29PL4n6ZKQZFnyEpBC_qhpaEITNU0IYDF4qsS4Ulrzjna2aaujJGVbysKSekqHlJmaAIfE3nyc3k2wX_vdOxl1sblW5bdNrvohSEVYWASgwkmcjxxBi0kV2wWwwHSUCOscmNHGKTY2wSSjnENmiuj-4YFbYmoFM2_gkLxgijgg3c3cTp4dW91UFGZbVTurFBq1423v6z5QdoO4Ou</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>914629069</pqid></control><display><type>article</type><title>Nonlinear dynamic analysis of a V-shaped microcantilever of an atomic force microscope</title><source>ScienceDirect Freedom Collection</source><creator>Kahrobaiyan, M.H. ; Rahaeifard, M. ; Ahmadian, M.T.</creator><creatorcontrib>Kahrobaiyan, M.H. ; Rahaeifard, M. ; Ahmadian, M.T.</creatorcontrib><description>This paper is devoted to investigate the nonlinear behaviors of a V-shaped microcantilever of an atomic force microscope (AFM) operating in its two major modes: amplitude modulation and frequency modulation. The nonlinear behavior of the AFM is due to the nonlinear nature of the AFM tip–sample interaction caused by the Van der Waals attraction/repulsion force. Considering the V-shaped microcantilever as a flexible continuous system, the resonant frequencies, mode shapes, governing nonlinear partial and ordinary differential equations (PDE and ODE) of motion, boundary conditions, frequency and time responses, potential function and phase-plane of the system are obtained analytically. The governing PDE is determined by employing the Hamilton principle. Subsequently, the Galerkin method is utilized to gain the governing nonlinear ODE. Afterward, the resulting ODE is analytically solved by means of some perturbation techniques including the method of multiple scales and the Lindsted–Poincare method. In addition, the effects of different parameters including geometrical one on the frequency response of the system are assessed.</description><identifier>ISSN: 0307-904X</identifier><identifier>DOI: 10.1016/j.apm.2011.05.039</identifier><identifier>CODEN: AMMODL</identifier><language>eng</language><publisher>Kidlington: Elsevier Inc</publisher><subject>Amplitude modulation mode ; Atomic force microscope ; Atomic force microscopes ; Atomic force microscopy ; Exact sciences and technology ; Frequency modulation mode ; Fundamental areas of phenomenology (including applications) ; Galerkin methods ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Mathematical analysis ; Mathematical models ; Mechanical instruments, equipment and techniques ; Method of multiple scales ; Micromechanical devices and systems ; Nonlinear dynamic analysis ; Nonlinearity ; Partial differential equations ; Physics ; Scanning probe microscopes, components and techniques ; Solid mechanics ; Structural and continuum mechanics ; V-shaped microcantilever ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><ispartof>Applied mathematical modelling, 2011-12, Vol.35 (12), p.5903-5919</ispartof><rights>2011 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-a129728d3514a4f393d7079c1b5ca576777b4fd86ffc6758371128753493a07b3</citedby><cites>FETCH-LOGICAL-c402t-a129728d3514a4f393d7079c1b5ca576777b4fd86ffc6758371128753493a07b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24414394$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kahrobaiyan, M.H.</creatorcontrib><creatorcontrib>Rahaeifard, M.</creatorcontrib><creatorcontrib>Ahmadian, M.T.</creatorcontrib><title>Nonlinear dynamic analysis of a V-shaped microcantilever of an atomic force microscope</title><title>Applied mathematical modelling</title><description>This paper is devoted to investigate the nonlinear behaviors of a V-shaped microcantilever of an atomic force microscope (AFM) operating in its two major modes: amplitude modulation and frequency modulation. The nonlinear behavior of the AFM is due to the nonlinear nature of the AFM tip–sample interaction caused by the Van der Waals attraction/repulsion force. Considering the V-shaped microcantilever as a flexible continuous system, the resonant frequencies, mode shapes, governing nonlinear partial and ordinary differential equations (PDE and ODE) of motion, boundary conditions, frequency and time responses, potential function and phase-plane of the system are obtained analytically. The governing PDE is determined by employing the Hamilton principle. Subsequently, the Galerkin method is utilized to gain the governing nonlinear ODE. Afterward, the resulting ODE is analytically solved by means of some perturbation techniques including the method of multiple scales and the Lindsted–Poincare method. In addition, the effects of different parameters including geometrical one on the frequency response of the system are assessed.</description><subject>Amplitude modulation mode</subject><subject>Atomic force microscope</subject><subject>Atomic force microscopes</subject><subject>Atomic force microscopy</subject><subject>Exact sciences and technology</subject><subject>Frequency modulation mode</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Galerkin methods</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mechanical instruments, equipment and techniques</subject><subject>Method of multiple scales</subject><subject>Micromechanical devices and systems</subject><subject>Nonlinear dynamic analysis</subject><subject>Nonlinearity</subject><subject>Partial differential equations</subject><subject>Physics</subject><subject>Scanning probe microscopes, components and techniques</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>V-shaped microcantilever</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><issn>0307-904X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kD9PwzAQxTOARCl8ALYsiCnhHDtxLCZU8U-qYIGKzbo6tnCV2sFOK_Xbk5CKkel0ut97d_eS5IpAToBUt5scu21eACE5lDlQcZLMgALPBLDPs-Q8xg0AlEM3S1av3rXWaQxpc3C4tSpFh-0h2ph6k2K6yuIXdrpJh1HwCl1vW73X4XfqUuz9qDE-KD0hUflOXySnBtuoL491nnw8PrwvnrPl29PL4n6ZKQZFnyEpBC_qhpaEITNU0IYDF4qsS4Ulrzjna2aaujJGVbysKSekqHlJmaAIfE3nyc3k2wX_vdOxl1sblW5bdNrvohSEVYWASgwkmcjxxBi0kV2wWwwHSUCOscmNHGKTY2wSSjnENmiuj-4YFbYmoFM2_gkLxgijgg3c3cTp4dW91UFGZbVTurFBq1423v6z5QdoO4Ou</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Kahrobaiyan, M.H.</creator><creator>Rahaeifard, M.</creator><creator>Ahmadian, M.T.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20111201</creationdate><title>Nonlinear dynamic analysis of a V-shaped microcantilever of an atomic force microscope</title><author>Kahrobaiyan, M.H. ; Rahaeifard, M. ; Ahmadian, M.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-a129728d3514a4f393d7079c1b5ca576777b4fd86ffc6758371128753493a07b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Amplitude modulation mode</topic><topic>Atomic force microscope</topic><topic>Atomic force microscopes</topic><topic>Atomic force microscopy</topic><topic>Exact sciences and technology</topic><topic>Frequency modulation mode</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Galerkin methods</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mechanical instruments, equipment and techniques</topic><topic>Method of multiple scales</topic><topic>Micromechanical devices and systems</topic><topic>Nonlinear dynamic analysis</topic><topic>Nonlinearity</topic><topic>Partial differential equations</topic><topic>Physics</topic><topic>Scanning probe microscopes, components and techniques</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>V-shaped microcantilever</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kahrobaiyan, M.H.</creatorcontrib><creatorcontrib>Rahaeifard, M.</creatorcontrib><creatorcontrib>Ahmadian, M.T.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematical modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kahrobaiyan, M.H.</au><au>Rahaeifard, M.</au><au>Ahmadian, M.T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear dynamic analysis of a V-shaped microcantilever of an atomic force microscope</atitle><jtitle>Applied mathematical modelling</jtitle><date>2011-12-01</date><risdate>2011</risdate><volume>35</volume><issue>12</issue><spage>5903</spage><epage>5919</epage><pages>5903-5919</pages><issn>0307-904X</issn><coden>AMMODL</coden><abstract>This paper is devoted to investigate the nonlinear behaviors of a V-shaped microcantilever of an atomic force microscope (AFM) operating in its two major modes: amplitude modulation and frequency modulation. The nonlinear behavior of the AFM is due to the nonlinear nature of the AFM tip–sample interaction caused by the Van der Waals attraction/repulsion force. Considering the V-shaped microcantilever as a flexible continuous system, the resonant frequencies, mode shapes, governing nonlinear partial and ordinary differential equations (PDE and ODE) of motion, boundary conditions, frequency and time responses, potential function and phase-plane of the system are obtained analytically. The governing PDE is determined by employing the Hamilton principle. Subsequently, the Galerkin method is utilized to gain the governing nonlinear ODE. Afterward, the resulting ODE is analytically solved by means of some perturbation techniques including the method of multiple scales and the Lindsted–Poincare method. In addition, the effects of different parameters including geometrical one on the frequency response of the system are assessed.</abstract><cop>Kidlington</cop><pub>Elsevier Inc</pub><doi>10.1016/j.apm.2011.05.039</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0307-904X
ispartof Applied mathematical modelling, 2011-12, Vol.35 (12), p.5903-5919
issn 0307-904X
language eng
recordid cdi_proquest_miscellaneous_914629069
source ScienceDirect Freedom Collection
subjects Amplitude modulation mode
Atomic force microscope
Atomic force microscopes
Atomic force microscopy
Exact sciences and technology
Frequency modulation mode
Fundamental areas of phenomenology (including applications)
Galerkin methods
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
Mathematical analysis
Mathematical models
Mechanical instruments, equipment and techniques
Method of multiple scales
Micromechanical devices and systems
Nonlinear dynamic analysis
Nonlinearity
Partial differential equations
Physics
Scanning probe microscopes, components and techniques
Solid mechanics
Structural and continuum mechanics
V-shaped microcantilever
Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)
title Nonlinear dynamic analysis of a V-shaped microcantilever of an atomic force microscope
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T06%3A55%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20dynamic%20analysis%20of%20a%20V-shaped%20microcantilever%20of%20an%20atomic%20force%20microscope&rft.jtitle=Applied%20mathematical%20modelling&rft.au=Kahrobaiyan,%20M.H.&rft.date=2011-12-01&rft.volume=35&rft.issue=12&rft.spage=5903&rft.epage=5919&rft.pages=5903-5919&rft.issn=0307-904X&rft.coden=AMMODL&rft_id=info:doi/10.1016/j.apm.2011.05.039&rft_dat=%3Cproquest_cross%3E914629069%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-a129728d3514a4f393d7079c1b5ca576777b4fd86ffc6758371128753493a07b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=914629069&rft_id=info:pmid/&rfr_iscdi=true