Loading…
Nonlinear dynamic analysis of a V-shaped microcantilever of an atomic force microscope
This paper is devoted to investigate the nonlinear behaviors of a V-shaped microcantilever of an atomic force microscope (AFM) operating in its two major modes: amplitude modulation and frequency modulation. The nonlinear behavior of the AFM is due to the nonlinear nature of the AFM tip–sample inter...
Saved in:
Published in: | Applied mathematical modelling 2011-12, Vol.35 (12), p.5903-5919 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c402t-a129728d3514a4f393d7079c1b5ca576777b4fd86ffc6758371128753493a07b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c402t-a129728d3514a4f393d7079c1b5ca576777b4fd86ffc6758371128753493a07b3 |
container_end_page | 5919 |
container_issue | 12 |
container_start_page | 5903 |
container_title | Applied mathematical modelling |
container_volume | 35 |
creator | Kahrobaiyan, M.H. Rahaeifard, M. Ahmadian, M.T. |
description | This paper is devoted to investigate the nonlinear behaviors of a V-shaped microcantilever of an atomic force microscope (AFM) operating in its two major modes: amplitude modulation and frequency modulation. The nonlinear behavior of the AFM is due to the nonlinear nature of the AFM tip–sample interaction caused by the Van der Waals attraction/repulsion force. Considering the V-shaped microcantilever as a flexible continuous system, the resonant frequencies, mode shapes, governing nonlinear partial and ordinary differential equations (PDE and ODE) of motion, boundary conditions, frequency and time responses, potential function and phase-plane of the system are obtained analytically. The governing PDE is determined by employing the Hamilton principle. Subsequently, the Galerkin method is utilized to gain the governing nonlinear ODE. Afterward, the resulting ODE is analytically solved by means of some perturbation techniques including the method of multiple scales and the Lindsted–Poincare method. In addition, the effects of different parameters including geometrical one on the frequency response of the system are assessed. |
doi_str_mv | 10.1016/j.apm.2011.05.039 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_914629069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0307904X11003507</els_id><sourcerecordid>914629069</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-a129728d3514a4f393d7079c1b5ca576777b4fd86ffc6758371128753493a07b3</originalsourceid><addsrcrecordid>eNp9kD9PwzAQxTOARCl8ALYsiCnhHDtxLCZU8U-qYIGKzbo6tnCV2sFOK_Xbk5CKkel0ut97d_eS5IpAToBUt5scu21eACE5lDlQcZLMgALPBLDPs-Q8xg0AlEM3S1av3rXWaQxpc3C4tSpFh-0h2ph6k2K6yuIXdrpJh1HwCl1vW73X4XfqUuz9qDE-KD0hUflOXySnBtuoL491nnw8PrwvnrPl29PL4n6ZKQZFnyEpBC_qhpaEITNU0IYDF4qsS4Ulrzjna2aaujJGVbysKSekqHlJmaAIfE3nyc3k2wX_vdOxl1sblW5bdNrvohSEVYWASgwkmcjxxBi0kV2wWwwHSUCOscmNHGKTY2wSSjnENmiuj-4YFbYmoFM2_gkLxgijgg3c3cTp4dW91UFGZbVTurFBq1423v6z5QdoO4Ou</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>914629069</pqid></control><display><type>article</type><title>Nonlinear dynamic analysis of a V-shaped microcantilever of an atomic force microscope</title><source>ScienceDirect Freedom Collection</source><creator>Kahrobaiyan, M.H. ; Rahaeifard, M. ; Ahmadian, M.T.</creator><creatorcontrib>Kahrobaiyan, M.H. ; Rahaeifard, M. ; Ahmadian, M.T.</creatorcontrib><description>This paper is devoted to investigate the nonlinear behaviors of a V-shaped microcantilever of an atomic force microscope (AFM) operating in its two major modes: amplitude modulation and frequency modulation. The nonlinear behavior of the AFM is due to the nonlinear nature of the AFM tip–sample interaction caused by the Van der Waals attraction/repulsion force. Considering the V-shaped microcantilever as a flexible continuous system, the resonant frequencies, mode shapes, governing nonlinear partial and ordinary differential equations (PDE and ODE) of motion, boundary conditions, frequency and time responses, potential function and phase-plane of the system are obtained analytically. The governing PDE is determined by employing the Hamilton principle. Subsequently, the Galerkin method is utilized to gain the governing nonlinear ODE. Afterward, the resulting ODE is analytically solved by means of some perturbation techniques including the method of multiple scales and the Lindsted–Poincare method. In addition, the effects of different parameters including geometrical one on the frequency response of the system are assessed.</description><identifier>ISSN: 0307-904X</identifier><identifier>DOI: 10.1016/j.apm.2011.05.039</identifier><identifier>CODEN: AMMODL</identifier><language>eng</language><publisher>Kidlington: Elsevier Inc</publisher><subject>Amplitude modulation mode ; Atomic force microscope ; Atomic force microscopes ; Atomic force microscopy ; Exact sciences and technology ; Frequency modulation mode ; Fundamental areas of phenomenology (including applications) ; Galerkin methods ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Mathematical analysis ; Mathematical models ; Mechanical instruments, equipment and techniques ; Method of multiple scales ; Micromechanical devices and systems ; Nonlinear dynamic analysis ; Nonlinearity ; Partial differential equations ; Physics ; Scanning probe microscopes, components and techniques ; Solid mechanics ; Structural and continuum mechanics ; V-shaped microcantilever ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><ispartof>Applied mathematical modelling, 2011-12, Vol.35 (12), p.5903-5919</ispartof><rights>2011 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-a129728d3514a4f393d7079c1b5ca576777b4fd86ffc6758371128753493a07b3</citedby><cites>FETCH-LOGICAL-c402t-a129728d3514a4f393d7079c1b5ca576777b4fd86ffc6758371128753493a07b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24414394$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kahrobaiyan, M.H.</creatorcontrib><creatorcontrib>Rahaeifard, M.</creatorcontrib><creatorcontrib>Ahmadian, M.T.</creatorcontrib><title>Nonlinear dynamic analysis of a V-shaped microcantilever of an atomic force microscope</title><title>Applied mathematical modelling</title><description>This paper is devoted to investigate the nonlinear behaviors of a V-shaped microcantilever of an atomic force microscope (AFM) operating in its two major modes: amplitude modulation and frequency modulation. The nonlinear behavior of the AFM is due to the nonlinear nature of the AFM tip–sample interaction caused by the Van der Waals attraction/repulsion force. Considering the V-shaped microcantilever as a flexible continuous system, the resonant frequencies, mode shapes, governing nonlinear partial and ordinary differential equations (PDE and ODE) of motion, boundary conditions, frequency and time responses, potential function and phase-plane of the system are obtained analytically. The governing PDE is determined by employing the Hamilton principle. Subsequently, the Galerkin method is utilized to gain the governing nonlinear ODE. Afterward, the resulting ODE is analytically solved by means of some perturbation techniques including the method of multiple scales and the Lindsted–Poincare method. In addition, the effects of different parameters including geometrical one on the frequency response of the system are assessed.</description><subject>Amplitude modulation mode</subject><subject>Atomic force microscope</subject><subject>Atomic force microscopes</subject><subject>Atomic force microscopy</subject><subject>Exact sciences and technology</subject><subject>Frequency modulation mode</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Galerkin methods</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mechanical instruments, equipment and techniques</subject><subject>Method of multiple scales</subject><subject>Micromechanical devices and systems</subject><subject>Nonlinear dynamic analysis</subject><subject>Nonlinearity</subject><subject>Partial differential equations</subject><subject>Physics</subject><subject>Scanning probe microscopes, components and techniques</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>V-shaped microcantilever</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><issn>0307-904X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kD9PwzAQxTOARCl8ALYsiCnhHDtxLCZU8U-qYIGKzbo6tnCV2sFOK_Xbk5CKkel0ut97d_eS5IpAToBUt5scu21eACE5lDlQcZLMgALPBLDPs-Q8xg0AlEM3S1av3rXWaQxpc3C4tSpFh-0h2ph6k2K6yuIXdrpJh1HwCl1vW73X4XfqUuz9qDE-KD0hUflOXySnBtuoL491nnw8PrwvnrPl29PL4n6ZKQZFnyEpBC_qhpaEITNU0IYDF4qsS4Ulrzjna2aaujJGVbysKSekqHlJmaAIfE3nyc3k2wX_vdOxl1sblW5bdNrvohSEVYWASgwkmcjxxBi0kV2wWwwHSUCOscmNHGKTY2wSSjnENmiuj-4YFbYmoFM2_gkLxgijgg3c3cTp4dW91UFGZbVTurFBq1423v6z5QdoO4Ou</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Kahrobaiyan, M.H.</creator><creator>Rahaeifard, M.</creator><creator>Ahmadian, M.T.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20111201</creationdate><title>Nonlinear dynamic analysis of a V-shaped microcantilever of an atomic force microscope</title><author>Kahrobaiyan, M.H. ; Rahaeifard, M. ; Ahmadian, M.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-a129728d3514a4f393d7079c1b5ca576777b4fd86ffc6758371128753493a07b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Amplitude modulation mode</topic><topic>Atomic force microscope</topic><topic>Atomic force microscopes</topic><topic>Atomic force microscopy</topic><topic>Exact sciences and technology</topic><topic>Frequency modulation mode</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Galerkin methods</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mechanical instruments, equipment and techniques</topic><topic>Method of multiple scales</topic><topic>Micromechanical devices and systems</topic><topic>Nonlinear dynamic analysis</topic><topic>Nonlinearity</topic><topic>Partial differential equations</topic><topic>Physics</topic><topic>Scanning probe microscopes, components and techniques</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>V-shaped microcantilever</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kahrobaiyan, M.H.</creatorcontrib><creatorcontrib>Rahaeifard, M.</creatorcontrib><creatorcontrib>Ahmadian, M.T.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematical modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kahrobaiyan, M.H.</au><au>Rahaeifard, M.</au><au>Ahmadian, M.T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear dynamic analysis of a V-shaped microcantilever of an atomic force microscope</atitle><jtitle>Applied mathematical modelling</jtitle><date>2011-12-01</date><risdate>2011</risdate><volume>35</volume><issue>12</issue><spage>5903</spage><epage>5919</epage><pages>5903-5919</pages><issn>0307-904X</issn><coden>AMMODL</coden><abstract>This paper is devoted to investigate the nonlinear behaviors of a V-shaped microcantilever of an atomic force microscope (AFM) operating in its two major modes: amplitude modulation and frequency modulation. The nonlinear behavior of the AFM is due to the nonlinear nature of the AFM tip–sample interaction caused by the Van der Waals attraction/repulsion force. Considering the V-shaped microcantilever as a flexible continuous system, the resonant frequencies, mode shapes, governing nonlinear partial and ordinary differential equations (PDE and ODE) of motion, boundary conditions, frequency and time responses, potential function and phase-plane of the system are obtained analytically. The governing PDE is determined by employing the Hamilton principle. Subsequently, the Galerkin method is utilized to gain the governing nonlinear ODE. Afterward, the resulting ODE is analytically solved by means of some perturbation techniques including the method of multiple scales and the Lindsted–Poincare method. In addition, the effects of different parameters including geometrical one on the frequency response of the system are assessed.</abstract><cop>Kidlington</cop><pub>Elsevier Inc</pub><doi>10.1016/j.apm.2011.05.039</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0307-904X |
ispartof | Applied mathematical modelling, 2011-12, Vol.35 (12), p.5903-5919 |
issn | 0307-904X |
language | eng |
recordid | cdi_proquest_miscellaneous_914629069 |
source | ScienceDirect Freedom Collection |
subjects | Amplitude modulation mode Atomic force microscope Atomic force microscopes Atomic force microscopy Exact sciences and technology Frequency modulation mode Fundamental areas of phenomenology (including applications) Galerkin methods Instruments, apparatus, components and techniques common to several branches of physics and astronomy Mathematical analysis Mathematical models Mechanical instruments, equipment and techniques Method of multiple scales Micromechanical devices and systems Nonlinear dynamic analysis Nonlinearity Partial differential equations Physics Scanning probe microscopes, components and techniques Solid mechanics Structural and continuum mechanics V-shaped microcantilever Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) |
title | Nonlinear dynamic analysis of a V-shaped microcantilever of an atomic force microscope |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T06%3A55%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20dynamic%20analysis%20of%20a%20V-shaped%20microcantilever%20of%20an%20atomic%20force%20microscope&rft.jtitle=Applied%20mathematical%20modelling&rft.au=Kahrobaiyan,%20M.H.&rft.date=2011-12-01&rft.volume=35&rft.issue=12&rft.spage=5903&rft.epage=5919&rft.pages=5903-5919&rft.issn=0307-904X&rft.coden=AMMODL&rft_id=info:doi/10.1016/j.apm.2011.05.039&rft_dat=%3Cproquest_cross%3E914629069%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-a129728d3514a4f393d7079c1b5ca576777b4fd86ffc6758371128753493a07b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=914629069&rft_id=info:pmid/&rfr_iscdi=true |