Loading…
Multispot diffusing configuration for wireless infrared access
In order to combine the advantages and to overcome the drawbacks of a direct line-of-sight or a diffuse configuration for wireless infrared access, a multispot diffusing concept utilizing a holographic spot array generator is presented. Simulation results are presented and compared with those for a...
Saved in:
Published in: | IEEE transactions on communications 2000-06, Vol.48 (6), p.970-978 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In order to combine the advantages and to overcome the drawbacks of a direct line-of-sight or a diffuse configuration for wireless infrared access, a multispot diffusing concept utilizing a holographic spot array generator is presented. Simulation results are presented and compared with those for a pure diffuse configuration in terms of link characteristics, when a single-element or a multibranch composite receiver is employed. The multispot transmitter ensures a more uniform signal power distribution. Improvements of about 2 dBo (optical decibels) can be achieved compared to a Lambertian pattern illumination. The increased power path loss at the edges of the communication cell is accompanied with a decrease in the delay spread resulting in an extension of the coverage range. Utilization of angle diversity detection improves the signal-to-noise ratio by more than 7 dB when selecting the best receiver branch and more than 10.5 dB in the case of maximal-ratio combining. Use of a multibeam transmitter and an angle diversity receiver reduces the likelihood of shadowing of the receiver due to an obstacle standing along the path between the receiver and the transmitter. |
---|---|
ISSN: | 0090-6778 1558-0857 |
DOI: | 10.1109/26.848558 |