Loading…
Control under quantization, saturation and delay: An LMI approach
This paper studies quantized and delayed state-feedback control of linear systems with given constant bounds on the quantization error and on the time-varying delay. The quantizer is supposed to be saturated. We consider two types of quantizations: quantized control input and quantized state. The co...
Saved in:
Published in: | Automatica (Oxford) 2009-10, Vol.45 (10), p.2258-2264 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c350t-6fb3885e2faa61b833d502cd60b363b90777014321e21cb65bd848ec74915d593 |
---|---|
cites | cdi_FETCH-LOGICAL-c350t-6fb3885e2faa61b833d502cd60b363b90777014321e21cb65bd848ec74915d593 |
container_end_page | 2264 |
container_issue | 10 |
container_start_page | 2258 |
container_title | Automatica (Oxford) |
container_volume | 45 |
creator | Fridman, Emilia Dambrine, Michel |
description | This paper studies quantized and delayed state-feedback control of linear systems with given constant bounds on the quantization error and on the time-varying delay. The quantizer is supposed to be
saturated. We consider two types of quantizations: quantized control input and quantized state. The controller is designed with the following property: all the states of the closed-loop system starting from a neighborhood of the origin exponentially converge to some bounded region (both, in
R
n
and in some infinite-dimensional state space). Under suitable conditions the attractive region is inside the initial one. We propose decomposition of the quantization into a sum of a saturation and of a uniformly bounded (by the quantization error bound) disturbance. A Linear Matrix Inequalities (LMIs) approach via Lyapunov–Krasovskii method originating in the earlier work [Fridman, E., Dambrine, M., & Yeganefar, N. (2008). On input-to-state stability of systems with time-delay: A matrix inequalities approach.
Automatica, 44, 2364–2369] is extended to the case of
saturated quantizer and of quantized state and is based on the simplified and improved Lyapunov–Krasovskii technique. |
doi_str_mv | 10.1016/j.automatica.2009.05.020 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_914630817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0005109809002866</els_id><sourcerecordid>914630817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-6fb3885e2faa61b833d502cd60b363b90777014321e21cb65bd848ec74915d593</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhC0EEqXwDr5xIWFtx47DrVT8VCriAmfLsV3hKnVa20EqT09KkThy2l1pZlbzIYQJlASIuF2Xesj9RmdvdEkBmhJ4CRRO0ITImhVUMnGKJgDACwKNPEcXKa3HsyKSTtBs3occ-w4PwbqId4MO2X-NaX24wUnnIf7sWAeLrev0_g7PAl6-LLDebmOvzcclOlvpLrmr3zlF748Pb_PnYvn6tJjPloVhHHIhVi2Tkju60lqQVjJmOVBjBbRMsLaBuq6BVIwSR4lpBW-trKQzddUQbnnDpuj6mDu-3Q0uZbXxybiu08H1Q1INqQQDSepRKY9KE_uUolupbfQbHfeKgDpAU2v1B00doCngaoQ2Wu-PVjc2-fQuqmS8C8ZZH53Jyvb-_5Bvi7V5ng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>914630817</pqid></control><display><type>article</type><title>Control under quantization, saturation and delay: An LMI approach</title><source>ScienceDirect Journals</source><creator>Fridman, Emilia ; Dambrine, Michel</creator><creatorcontrib>Fridman, Emilia ; Dambrine, Michel</creatorcontrib><description>This paper studies quantized and delayed state-feedback control of linear systems with given constant bounds on the quantization error and on the time-varying delay. The quantizer is supposed to be
saturated. We consider two types of quantizations: quantized control input and quantized state. The controller is designed with the following property: all the states of the closed-loop system starting from a neighborhood of the origin exponentially converge to some bounded region (both, in
R
n
and in some infinite-dimensional state space). Under suitable conditions the attractive region is inside the initial one. We propose decomposition of the quantization into a sum of a saturation and of a uniformly bounded (by the quantization error bound) disturbance. A Linear Matrix Inequalities (LMIs) approach via Lyapunov–Krasovskii method originating in the earlier work [Fridman, E., Dambrine, M., & Yeganefar, N. (2008). On input-to-state stability of systems with time-delay: A matrix inequalities approach.
Automatica, 44, 2364–2369] is extended to the case of
saturated quantizer and of quantized state and is based on the simplified and improved Lyapunov–Krasovskii technique.</description><identifier>ISSN: 0005-1098</identifier><identifier>EISSN: 1873-2836</identifier><identifier>DOI: 10.1016/j.automatica.2009.05.020</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Automation ; Control systems ; Counters ; Delay ; Inequalities ; Linear systems ; LMI ; Lyapunov–Krasovskii functional ; Quantization ; Saturation ; Time-delay</subject><ispartof>Automatica (Oxford), 2009-10, Vol.45 (10), p.2258-2264</ispartof><rights>2009 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-6fb3885e2faa61b833d502cd60b363b90777014321e21cb65bd848ec74915d593</citedby><cites>FETCH-LOGICAL-c350t-6fb3885e2faa61b833d502cd60b363b90777014321e21cb65bd848ec74915d593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Fridman, Emilia</creatorcontrib><creatorcontrib>Dambrine, Michel</creatorcontrib><title>Control under quantization, saturation and delay: An LMI approach</title><title>Automatica (Oxford)</title><description>This paper studies quantized and delayed state-feedback control of linear systems with given constant bounds on the quantization error and on the time-varying delay. The quantizer is supposed to be
saturated. We consider two types of quantizations: quantized control input and quantized state. The controller is designed with the following property: all the states of the closed-loop system starting from a neighborhood of the origin exponentially converge to some bounded region (both, in
R
n
and in some infinite-dimensional state space). Under suitable conditions the attractive region is inside the initial one. We propose decomposition of the quantization into a sum of a saturation and of a uniformly bounded (by the quantization error bound) disturbance. A Linear Matrix Inequalities (LMIs) approach via Lyapunov–Krasovskii method originating in the earlier work [Fridman, E., Dambrine, M., & Yeganefar, N. (2008). On input-to-state stability of systems with time-delay: A matrix inequalities approach.
Automatica, 44, 2364–2369] is extended to the case of
saturated quantizer and of quantized state and is based on the simplified and improved Lyapunov–Krasovskii technique.</description><subject>Automation</subject><subject>Control systems</subject><subject>Counters</subject><subject>Delay</subject><subject>Inequalities</subject><subject>Linear systems</subject><subject>LMI</subject><subject>Lyapunov–Krasovskii functional</subject><subject>Quantization</subject><subject>Saturation</subject><subject>Time-delay</subject><issn>0005-1098</issn><issn>1873-2836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhC0EEqXwDr5xIWFtx47DrVT8VCriAmfLsV3hKnVa20EqT09KkThy2l1pZlbzIYQJlASIuF2Xesj9RmdvdEkBmhJ4CRRO0ITImhVUMnGKJgDACwKNPEcXKa3HsyKSTtBs3occ-w4PwbqId4MO2X-NaX24wUnnIf7sWAeLrev0_g7PAl6-LLDebmOvzcclOlvpLrmr3zlF748Pb_PnYvn6tJjPloVhHHIhVi2Tkju60lqQVjJmOVBjBbRMsLaBuq6BVIwSR4lpBW-trKQzddUQbnnDpuj6mDu-3Q0uZbXxybiu08H1Q1INqQQDSepRKY9KE_uUolupbfQbHfeKgDpAU2v1B00doCngaoQ2Wu-PVjc2-fQuqmS8C8ZZH53Jyvb-_5Bvi7V5ng</recordid><startdate>20091001</startdate><enddate>20091001</enddate><creator>Fridman, Emilia</creator><creator>Dambrine, Michel</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20091001</creationdate><title>Control under quantization, saturation and delay: An LMI approach</title><author>Fridman, Emilia ; Dambrine, Michel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-6fb3885e2faa61b833d502cd60b363b90777014321e21cb65bd848ec74915d593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Automation</topic><topic>Control systems</topic><topic>Counters</topic><topic>Delay</topic><topic>Inequalities</topic><topic>Linear systems</topic><topic>LMI</topic><topic>Lyapunov–Krasovskii functional</topic><topic>Quantization</topic><topic>Saturation</topic><topic>Time-delay</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fridman, Emilia</creatorcontrib><creatorcontrib>Dambrine, Michel</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Automatica (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fridman, Emilia</au><au>Dambrine, Michel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control under quantization, saturation and delay: An LMI approach</atitle><jtitle>Automatica (Oxford)</jtitle><date>2009-10-01</date><risdate>2009</risdate><volume>45</volume><issue>10</issue><spage>2258</spage><epage>2264</epage><pages>2258-2264</pages><issn>0005-1098</issn><eissn>1873-2836</eissn><abstract>This paper studies quantized and delayed state-feedback control of linear systems with given constant bounds on the quantization error and on the time-varying delay. The quantizer is supposed to be
saturated. We consider two types of quantizations: quantized control input and quantized state. The controller is designed with the following property: all the states of the closed-loop system starting from a neighborhood of the origin exponentially converge to some bounded region (both, in
R
n
and in some infinite-dimensional state space). Under suitable conditions the attractive region is inside the initial one. We propose decomposition of the quantization into a sum of a saturation and of a uniformly bounded (by the quantization error bound) disturbance. A Linear Matrix Inequalities (LMIs) approach via Lyapunov–Krasovskii method originating in the earlier work [Fridman, E., Dambrine, M., & Yeganefar, N. (2008). On input-to-state stability of systems with time-delay: A matrix inequalities approach.
Automatica, 44, 2364–2369] is extended to the case of
saturated quantizer and of quantized state and is based on the simplified and improved Lyapunov–Krasovskii technique.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.automatica.2009.05.020</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0005-1098 |
ispartof | Automatica (Oxford), 2009-10, Vol.45 (10), p.2258-2264 |
issn | 0005-1098 1873-2836 |
language | eng |
recordid | cdi_proquest_miscellaneous_914630817 |
source | ScienceDirect Journals |
subjects | Automation Control systems Counters Delay Inequalities Linear systems LMI Lyapunov–Krasovskii functional Quantization Saturation Time-delay |
title | Control under quantization, saturation and delay: An LMI approach |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T00%3A29%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20under%20quantization,%20saturation%20and%20delay:%20An%20LMI%20approach&rft.jtitle=Automatica%20(Oxford)&rft.au=Fridman,%20Emilia&rft.date=2009-10-01&rft.volume=45&rft.issue=10&rft.spage=2258&rft.epage=2264&rft.pages=2258-2264&rft.issn=0005-1098&rft.eissn=1873-2836&rft_id=info:doi/10.1016/j.automatica.2009.05.020&rft_dat=%3Cproquest_cross%3E914630817%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c350t-6fb3885e2faa61b833d502cd60b363b90777014321e21cb65bd848ec74915d593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=914630817&rft_id=info:pmid/&rfr_iscdi=true |