Loading…
Very large radiative transfer over small distances from a black body for thermophotovoltaic applications
The maximum amount of radiated heat intensity which can be transferred from a black body of refractive index D/sub BB/ to an object of refractive index D/sub OBJ/ located a short distance away is shown to be n/sub smaller//sup 2/ times the free space Planck distribution where n/sub smaller/ is the s...
Saved in:
Published in: | IEEE transactions on electron devices 2000-01, Vol.47 (1), p.241-249 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c461t-50ab46e7a87076b1c7f1190a196b51b1439cdf3ce03eefaae8c8ddcc141c8bb53 |
---|---|
cites | cdi_FETCH-LOGICAL-c461t-50ab46e7a87076b1c7f1190a196b51b1439cdf3ce03eefaae8c8ddcc141c8bb53 |
container_end_page | 249 |
container_issue | 1 |
container_start_page | 241 |
container_title | IEEE transactions on electron devices |
container_volume | 47 |
creator | Pan, J.L. Choy, H.K.H. Fonstad, C.G. |
description | The maximum amount of radiated heat intensity which can be transferred from a black body of refractive index D/sub BB/ to an object of refractive index D/sub OBJ/ located a short distance away is shown to be n/sub smaller//sup 2/ times the free space Planck distribution where n/sub smaller/ is the smaller of n/sub BB/ and n/sub OBJ/, and where n/sub BB/ and n/sub OBJ/ are assumed greater than unity. The implication is that the radiative power spectral density within a thermophotovoltaic cell could be designed to be much greater than the free space Planck distribution. The maximum radiative intensity transferred occurs when the index of the black body matches that of the object at wavelengths where the Planck distribution is sizeable. A simple expression is found for the transferred radiative intensity as a function of the refractive indices of and the distance separating, the black body and the object. This expression is interpreted in terms of the specific black body modes which are evanescent in the space between the black body and the object and which make the largest contribution to the transmission of radiation. The black body, the object, and the region are all modeled as lossless dielectrics. |
doi_str_mv | 10.1109/16.817591 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_914631537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>817591</ieee_id><sourcerecordid>914631537</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-50ab46e7a87076b1c7f1190a196b51b1439cdf3ce03eefaae8c8ddcc141c8bb53</originalsourceid><addsrcrecordid>eNqF0UuLFDEQAOAgCo6rB6-egoLiodfU5NHJcVl8wYIX9RrS6Wona7rTJpmB-fdm6cWDB71UUdRHQVUR8hzYJQAz70BdauilgQdkB1L2nVFCPSQ7xkB3hmv-mDwp5baVSoj9jhy-Yz7T6PIPpNmNwdVwQlqzW8qEmaZTC2V2MdIxlOoWj4VOOc3U0SE6_5MOaTzTKWVaD5jntB5STacUqwueunWNwbeRaSlPyaPJxYLP7vMF-fbh_dfrT93Nl4-fr69uOi8U1E4yNwiFvdM969UAvp8ADHNg1CBhAMGNHyfukXHEyTnUXo-j9yDA62GQ_IK82uamUoMtPlT0B5-WBX21-7a34KCaerOpNadfRyzVzqF4jNEtmI7FGhCKg-R9k6__KfdaKSO5-D9UCiT0d_DlX_A2HfPSjmK1lnsumISG3m7I51RKxsmuOcwuny0we_dpC8pun272xWYDIv5x983f_uSjxQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>885234051</pqid></control><display><type>article</type><title>Very large radiative transfer over small distances from a black body for thermophotovoltaic applications</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Pan, J.L. ; Choy, H.K.H. ; Fonstad, C.G.</creator><creatorcontrib>Pan, J.L. ; Choy, H.K.H. ; Fonstad, C.G. ; Massachusetts Inst. of Tech., Cambridge, MA (US)</creatorcontrib><description>The maximum amount of radiated heat intensity which can be transferred from a black body of refractive index D/sub BB/ to an object of refractive index D/sub OBJ/ located a short distance away is shown to be n/sub smaller//sup 2/ times the free space Planck distribution where n/sub smaller/ is the smaller of n/sub BB/ and n/sub OBJ/, and where n/sub BB/ and n/sub OBJ/ are assumed greater than unity. The implication is that the radiative power spectral density within a thermophotovoltaic cell could be designed to be much greater than the free space Planck distribution. The maximum radiative intensity transferred occurs when the index of the black body matches that of the object at wavelengths where the Planck distribution is sizeable. A simple expression is found for the transferred radiative intensity as a function of the refractive indices of and the distance separating, the black body and the object. This expression is interpreted in terms of the specific black body modes which are evanescent in the space between the black body and the object and which make the largest contribution to the transmission of radiation. The black body, the object, and the region are all modeled as lossless dielectrics.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/16.817591</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>30 DIRECT ENERGY CONVERSION ; BLACKBODY RADIATION ; Density ; Dielectrics ; MATHEMATICAL MODELS ; Photovoltaic power systems ; PLANCK RADIATION FORMULA ; RADIANT HEAT TRANSFER ; REFRACTIVE INDEX ; Refractivity ; Spectra ; THERMOPHOTOVOLTAIC CONVERTERS ; Thermophotovoltaics ; Unity ; Wavelengths</subject><ispartof>IEEE transactions on electron devices, 2000-01, Vol.47 (1), p.241-249</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c461t-50ab46e7a87076b1c7f1190a196b51b1439cdf3ce03eefaae8c8ddcc141c8bb53</citedby><cites>FETCH-LOGICAL-c461t-50ab46e7a87076b1c7f1190a196b51b1439cdf3ce03eefaae8c8ddcc141c8bb53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/817591$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,54795</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/20014316$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Pan, J.L.</creatorcontrib><creatorcontrib>Choy, H.K.H.</creatorcontrib><creatorcontrib>Fonstad, C.G.</creatorcontrib><creatorcontrib>Massachusetts Inst. of Tech., Cambridge, MA (US)</creatorcontrib><title>Very large radiative transfer over small distances from a black body for thermophotovoltaic applications</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>The maximum amount of radiated heat intensity which can be transferred from a black body of refractive index D/sub BB/ to an object of refractive index D/sub OBJ/ located a short distance away is shown to be n/sub smaller//sup 2/ times the free space Planck distribution where n/sub smaller/ is the smaller of n/sub BB/ and n/sub OBJ/, and where n/sub BB/ and n/sub OBJ/ are assumed greater than unity. The implication is that the radiative power spectral density within a thermophotovoltaic cell could be designed to be much greater than the free space Planck distribution. The maximum radiative intensity transferred occurs when the index of the black body matches that of the object at wavelengths where the Planck distribution is sizeable. A simple expression is found for the transferred radiative intensity as a function of the refractive indices of and the distance separating, the black body and the object. This expression is interpreted in terms of the specific black body modes which are evanescent in the space between the black body and the object and which make the largest contribution to the transmission of radiation. The black body, the object, and the region are all modeled as lossless dielectrics.</description><subject>30 DIRECT ENERGY CONVERSION</subject><subject>BLACKBODY RADIATION</subject><subject>Density</subject><subject>Dielectrics</subject><subject>MATHEMATICAL MODELS</subject><subject>Photovoltaic power systems</subject><subject>PLANCK RADIATION FORMULA</subject><subject>RADIANT HEAT TRANSFER</subject><subject>REFRACTIVE INDEX</subject><subject>Refractivity</subject><subject>Spectra</subject><subject>THERMOPHOTOVOLTAIC CONVERTERS</subject><subject>Thermophotovoltaics</subject><subject>Unity</subject><subject>Wavelengths</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqF0UuLFDEQAOAgCo6rB6-egoLiodfU5NHJcVl8wYIX9RrS6Wona7rTJpmB-fdm6cWDB71UUdRHQVUR8hzYJQAz70BdauilgQdkB1L2nVFCPSQ7xkB3hmv-mDwp5baVSoj9jhy-Yz7T6PIPpNmNwdVwQlqzW8qEmaZTC2V2MdIxlOoWj4VOOc3U0SE6_5MOaTzTKWVaD5jntB5STacUqwueunWNwbeRaSlPyaPJxYLP7vMF-fbh_dfrT93Nl4-fr69uOi8U1E4yNwiFvdM969UAvp8ADHNg1CBhAMGNHyfukXHEyTnUXo-j9yDA62GQ_IK82uamUoMtPlT0B5-WBX21-7a34KCaerOpNadfRyzVzqF4jNEtmI7FGhCKg-R9k6__KfdaKSO5-D9UCiT0d_DlX_A2HfPSjmK1lnsumISG3m7I51RKxsmuOcwuny0we_dpC8pun272xWYDIv5x983f_uSjxQ</recordid><startdate>200001</startdate><enddate>200001</enddate><creator>Pan, J.L.</creator><creator>Choy, H.K.H.</creator><creator>Fonstad, C.G.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7U5</scope><scope>F28</scope><scope>FR3</scope><scope>OTOTI</scope></search><sort><creationdate>200001</creationdate><title>Very large radiative transfer over small distances from a black body for thermophotovoltaic applications</title><author>Pan, J.L. ; Choy, H.K.H. ; Fonstad, C.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-50ab46e7a87076b1c7f1190a196b51b1439cdf3ce03eefaae8c8ddcc141c8bb53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>30 DIRECT ENERGY CONVERSION</topic><topic>BLACKBODY RADIATION</topic><topic>Density</topic><topic>Dielectrics</topic><topic>MATHEMATICAL MODELS</topic><topic>Photovoltaic power systems</topic><topic>PLANCK RADIATION FORMULA</topic><topic>RADIANT HEAT TRANSFER</topic><topic>REFRACTIVE INDEX</topic><topic>Refractivity</topic><topic>Spectra</topic><topic>THERMOPHOTOVOLTAIC CONVERTERS</topic><topic>Thermophotovoltaics</topic><topic>Unity</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, J.L.</creatorcontrib><creatorcontrib>Choy, H.K.H.</creatorcontrib><creatorcontrib>Fonstad, C.G.</creatorcontrib><creatorcontrib>Massachusetts Inst. of Tech., Cambridge, MA (US)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Explore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, J.L.</au><au>Choy, H.K.H.</au><au>Fonstad, C.G.</au><aucorp>Massachusetts Inst. of Tech., Cambridge, MA (US)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Very large radiative transfer over small distances from a black body for thermophotovoltaic applications</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2000-01</date><risdate>2000</risdate><volume>47</volume><issue>1</issue><spage>241</spage><epage>249</epage><pages>241-249</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>The maximum amount of radiated heat intensity which can be transferred from a black body of refractive index D/sub BB/ to an object of refractive index D/sub OBJ/ located a short distance away is shown to be n/sub smaller//sup 2/ times the free space Planck distribution where n/sub smaller/ is the smaller of n/sub BB/ and n/sub OBJ/, and where n/sub BB/ and n/sub OBJ/ are assumed greater than unity. The implication is that the radiative power spectral density within a thermophotovoltaic cell could be designed to be much greater than the free space Planck distribution. The maximum radiative intensity transferred occurs when the index of the black body matches that of the object at wavelengths where the Planck distribution is sizeable. A simple expression is found for the transferred radiative intensity as a function of the refractive indices of and the distance separating, the black body and the object. This expression is interpreted in terms of the specific black body modes which are evanescent in the space between the black body and the object and which make the largest contribution to the transmission of radiation. The black body, the object, and the region are all modeled as lossless dielectrics.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/16.817591</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2000-01, Vol.47 (1), p.241-249 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_proquest_miscellaneous_914631537 |
source | IEEE Electronic Library (IEL) Journals |
subjects | 30 DIRECT ENERGY CONVERSION BLACKBODY RADIATION Density Dielectrics MATHEMATICAL MODELS Photovoltaic power systems PLANCK RADIATION FORMULA RADIANT HEAT TRANSFER REFRACTIVE INDEX Refractivity Spectra THERMOPHOTOVOLTAIC CONVERTERS Thermophotovoltaics Unity Wavelengths |
title | Very large radiative transfer over small distances from a black body for thermophotovoltaic applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A37%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Very%20large%20radiative%20transfer%20over%20small%20distances%20from%20a%20black%20body%20for%20thermophotovoltaic%20applications&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Pan,%20J.L.&rft.aucorp=Massachusetts%20Inst.%20of%20Tech.,%20Cambridge,%20MA%20(US)&rft.date=2000-01&rft.volume=47&rft.issue=1&rft.spage=241&rft.epage=249&rft.pages=241-249&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/16.817591&rft_dat=%3Cproquest_osti_%3E914631537%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c461t-50ab46e7a87076b1c7f1190a196b51b1439cdf3ce03eefaae8c8ddcc141c8bb53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=885234051&rft_id=info:pmid/&rft_ieee_id=817591&rfr_iscdi=true |