Loading…

Very large radiative transfer over small distances from a black body for thermophotovoltaic applications

The maximum amount of radiated heat intensity which can be transferred from a black body of refractive index D/sub BB/ to an object of refractive index D/sub OBJ/ located a short distance away is shown to be n/sub smaller//sup 2/ times the free space Planck distribution where n/sub smaller/ is the s...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on electron devices 2000-01, Vol.47 (1), p.241-249
Main Authors: Pan, J.L., Choy, H.K.H., Fonstad, C.G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c461t-50ab46e7a87076b1c7f1190a196b51b1439cdf3ce03eefaae8c8ddcc141c8bb53
cites cdi_FETCH-LOGICAL-c461t-50ab46e7a87076b1c7f1190a196b51b1439cdf3ce03eefaae8c8ddcc141c8bb53
container_end_page 249
container_issue 1
container_start_page 241
container_title IEEE transactions on electron devices
container_volume 47
creator Pan, J.L.
Choy, H.K.H.
Fonstad, C.G.
description The maximum amount of radiated heat intensity which can be transferred from a black body of refractive index D/sub BB/ to an object of refractive index D/sub OBJ/ located a short distance away is shown to be n/sub smaller//sup 2/ times the free space Planck distribution where n/sub smaller/ is the smaller of n/sub BB/ and n/sub OBJ/, and where n/sub BB/ and n/sub OBJ/ are assumed greater than unity. The implication is that the radiative power spectral density within a thermophotovoltaic cell could be designed to be much greater than the free space Planck distribution. The maximum radiative intensity transferred occurs when the index of the black body matches that of the object at wavelengths where the Planck distribution is sizeable. A simple expression is found for the transferred radiative intensity as a function of the refractive indices of and the distance separating, the black body and the object. This expression is interpreted in terms of the specific black body modes which are evanescent in the space between the black body and the object and which make the largest contribution to the transmission of radiation. The black body, the object, and the region are all modeled as lossless dielectrics.
doi_str_mv 10.1109/16.817591
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_914631537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>817591</ieee_id><sourcerecordid>914631537</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-50ab46e7a87076b1c7f1190a196b51b1439cdf3ce03eefaae8c8ddcc141c8bb53</originalsourceid><addsrcrecordid>eNqF0UuLFDEQAOAgCo6rB6-egoLiodfU5NHJcVl8wYIX9RrS6Wona7rTJpmB-fdm6cWDB71UUdRHQVUR8hzYJQAz70BdauilgQdkB1L2nVFCPSQ7xkB3hmv-mDwp5baVSoj9jhy-Yz7T6PIPpNmNwdVwQlqzW8qEmaZTC2V2MdIxlOoWj4VOOc3U0SE6_5MOaTzTKWVaD5jntB5STacUqwueunWNwbeRaSlPyaPJxYLP7vMF-fbh_dfrT93Nl4-fr69uOi8U1E4yNwiFvdM969UAvp8ADHNg1CBhAMGNHyfukXHEyTnUXo-j9yDA62GQ_IK82uamUoMtPlT0B5-WBX21-7a34KCaerOpNadfRyzVzqF4jNEtmI7FGhCKg-R9k6__KfdaKSO5-D9UCiT0d_DlX_A2HfPSjmK1lnsumISG3m7I51RKxsmuOcwuny0we_dpC8pun272xWYDIv5x983f_uSjxQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>885234051</pqid></control><display><type>article</type><title>Very large radiative transfer over small distances from a black body for thermophotovoltaic applications</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Pan, J.L. ; Choy, H.K.H. ; Fonstad, C.G.</creator><creatorcontrib>Pan, J.L. ; Choy, H.K.H. ; Fonstad, C.G. ; Massachusetts Inst. of Tech., Cambridge, MA (US)</creatorcontrib><description>The maximum amount of radiated heat intensity which can be transferred from a black body of refractive index D/sub BB/ to an object of refractive index D/sub OBJ/ located a short distance away is shown to be n/sub smaller//sup 2/ times the free space Planck distribution where n/sub smaller/ is the smaller of n/sub BB/ and n/sub OBJ/, and where n/sub BB/ and n/sub OBJ/ are assumed greater than unity. The implication is that the radiative power spectral density within a thermophotovoltaic cell could be designed to be much greater than the free space Planck distribution. The maximum radiative intensity transferred occurs when the index of the black body matches that of the object at wavelengths where the Planck distribution is sizeable. A simple expression is found for the transferred radiative intensity as a function of the refractive indices of and the distance separating, the black body and the object. This expression is interpreted in terms of the specific black body modes which are evanescent in the space between the black body and the object and which make the largest contribution to the transmission of radiation. The black body, the object, and the region are all modeled as lossless dielectrics.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/16.817591</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>30 DIRECT ENERGY CONVERSION ; BLACKBODY RADIATION ; Density ; Dielectrics ; MATHEMATICAL MODELS ; Photovoltaic power systems ; PLANCK RADIATION FORMULA ; RADIANT HEAT TRANSFER ; REFRACTIVE INDEX ; Refractivity ; Spectra ; THERMOPHOTOVOLTAIC CONVERTERS ; Thermophotovoltaics ; Unity ; Wavelengths</subject><ispartof>IEEE transactions on electron devices, 2000-01, Vol.47 (1), p.241-249</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c461t-50ab46e7a87076b1c7f1190a196b51b1439cdf3ce03eefaae8c8ddcc141c8bb53</citedby><cites>FETCH-LOGICAL-c461t-50ab46e7a87076b1c7f1190a196b51b1439cdf3ce03eefaae8c8ddcc141c8bb53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/817591$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,54795</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/20014316$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Pan, J.L.</creatorcontrib><creatorcontrib>Choy, H.K.H.</creatorcontrib><creatorcontrib>Fonstad, C.G.</creatorcontrib><creatorcontrib>Massachusetts Inst. of Tech., Cambridge, MA (US)</creatorcontrib><title>Very large radiative transfer over small distances from a black body for thermophotovoltaic applications</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>The maximum amount of radiated heat intensity which can be transferred from a black body of refractive index D/sub BB/ to an object of refractive index D/sub OBJ/ located a short distance away is shown to be n/sub smaller//sup 2/ times the free space Planck distribution where n/sub smaller/ is the smaller of n/sub BB/ and n/sub OBJ/, and where n/sub BB/ and n/sub OBJ/ are assumed greater than unity. The implication is that the radiative power spectral density within a thermophotovoltaic cell could be designed to be much greater than the free space Planck distribution. The maximum radiative intensity transferred occurs when the index of the black body matches that of the object at wavelengths where the Planck distribution is sizeable. A simple expression is found for the transferred radiative intensity as a function of the refractive indices of and the distance separating, the black body and the object. This expression is interpreted in terms of the specific black body modes which are evanescent in the space between the black body and the object and which make the largest contribution to the transmission of radiation. The black body, the object, and the region are all modeled as lossless dielectrics.</description><subject>30 DIRECT ENERGY CONVERSION</subject><subject>BLACKBODY RADIATION</subject><subject>Density</subject><subject>Dielectrics</subject><subject>MATHEMATICAL MODELS</subject><subject>Photovoltaic power systems</subject><subject>PLANCK RADIATION FORMULA</subject><subject>RADIANT HEAT TRANSFER</subject><subject>REFRACTIVE INDEX</subject><subject>Refractivity</subject><subject>Spectra</subject><subject>THERMOPHOTOVOLTAIC CONVERTERS</subject><subject>Thermophotovoltaics</subject><subject>Unity</subject><subject>Wavelengths</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqF0UuLFDEQAOAgCo6rB6-egoLiodfU5NHJcVl8wYIX9RrS6Wona7rTJpmB-fdm6cWDB71UUdRHQVUR8hzYJQAz70BdauilgQdkB1L2nVFCPSQ7xkB3hmv-mDwp5baVSoj9jhy-Yz7T6PIPpNmNwdVwQlqzW8qEmaZTC2V2MdIxlOoWj4VOOc3U0SE6_5MOaTzTKWVaD5jntB5STacUqwueunWNwbeRaSlPyaPJxYLP7vMF-fbh_dfrT93Nl4-fr69uOi8U1E4yNwiFvdM969UAvp8ADHNg1CBhAMGNHyfukXHEyTnUXo-j9yDA62GQ_IK82uamUoMtPlT0B5-WBX21-7a34KCaerOpNadfRyzVzqF4jNEtmI7FGhCKg-R9k6__KfdaKSO5-D9UCiT0d_DlX_A2HfPSjmK1lnsumISG3m7I51RKxsmuOcwuny0we_dpC8pun272xWYDIv5x983f_uSjxQ</recordid><startdate>200001</startdate><enddate>200001</enddate><creator>Pan, J.L.</creator><creator>Choy, H.K.H.</creator><creator>Fonstad, C.G.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7U5</scope><scope>F28</scope><scope>FR3</scope><scope>OTOTI</scope></search><sort><creationdate>200001</creationdate><title>Very large radiative transfer over small distances from a black body for thermophotovoltaic applications</title><author>Pan, J.L. ; Choy, H.K.H. ; Fonstad, C.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-50ab46e7a87076b1c7f1190a196b51b1439cdf3ce03eefaae8c8ddcc141c8bb53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>30 DIRECT ENERGY CONVERSION</topic><topic>BLACKBODY RADIATION</topic><topic>Density</topic><topic>Dielectrics</topic><topic>MATHEMATICAL MODELS</topic><topic>Photovoltaic power systems</topic><topic>PLANCK RADIATION FORMULA</topic><topic>RADIANT HEAT TRANSFER</topic><topic>REFRACTIVE INDEX</topic><topic>Refractivity</topic><topic>Spectra</topic><topic>THERMOPHOTOVOLTAIC CONVERTERS</topic><topic>Thermophotovoltaics</topic><topic>Unity</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, J.L.</creatorcontrib><creatorcontrib>Choy, H.K.H.</creatorcontrib><creatorcontrib>Fonstad, C.G.</creatorcontrib><creatorcontrib>Massachusetts Inst. of Tech., Cambridge, MA (US)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Explore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, J.L.</au><au>Choy, H.K.H.</au><au>Fonstad, C.G.</au><aucorp>Massachusetts Inst. of Tech., Cambridge, MA (US)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Very large radiative transfer over small distances from a black body for thermophotovoltaic applications</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2000-01</date><risdate>2000</risdate><volume>47</volume><issue>1</issue><spage>241</spage><epage>249</epage><pages>241-249</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>The maximum amount of radiated heat intensity which can be transferred from a black body of refractive index D/sub BB/ to an object of refractive index D/sub OBJ/ located a short distance away is shown to be n/sub smaller//sup 2/ times the free space Planck distribution where n/sub smaller/ is the smaller of n/sub BB/ and n/sub OBJ/, and where n/sub BB/ and n/sub OBJ/ are assumed greater than unity. The implication is that the radiative power spectral density within a thermophotovoltaic cell could be designed to be much greater than the free space Planck distribution. The maximum radiative intensity transferred occurs when the index of the black body matches that of the object at wavelengths where the Planck distribution is sizeable. A simple expression is found for the transferred radiative intensity as a function of the refractive indices of and the distance separating, the black body and the object. This expression is interpreted in terms of the specific black body modes which are evanescent in the space between the black body and the object and which make the largest contribution to the transmission of radiation. The black body, the object, and the region are all modeled as lossless dielectrics.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/16.817591</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2000-01, Vol.47 (1), p.241-249
issn 0018-9383
1557-9646
language eng
recordid cdi_proquest_miscellaneous_914631537
source IEEE Electronic Library (IEL) Journals
subjects 30 DIRECT ENERGY CONVERSION
BLACKBODY RADIATION
Density
Dielectrics
MATHEMATICAL MODELS
Photovoltaic power systems
PLANCK RADIATION FORMULA
RADIANT HEAT TRANSFER
REFRACTIVE INDEX
Refractivity
Spectra
THERMOPHOTOVOLTAIC CONVERTERS
Thermophotovoltaics
Unity
Wavelengths
title Very large radiative transfer over small distances from a black body for thermophotovoltaic applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A37%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Very%20large%20radiative%20transfer%20over%20small%20distances%20from%20a%20black%20body%20for%20thermophotovoltaic%20applications&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Pan,%20J.L.&rft.aucorp=Massachusetts%20Inst.%20of%20Tech.,%20Cambridge,%20MA%20(US)&rft.date=2000-01&rft.volume=47&rft.issue=1&rft.spage=241&rft.epage=249&rft.pages=241-249&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/16.817591&rft_dat=%3Cproquest_osti_%3E914631537%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c461t-50ab46e7a87076b1c7f1190a196b51b1439cdf3ce03eefaae8c8ddcc141c8bb53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=885234051&rft_id=info:pmid/&rft_ieee_id=817591&rfr_iscdi=true