Loading…

Elastic fields around a nanosized spheroidal cavity under arbitrary uniform remote loadings

When the size of a cavity shrinks to nanometers, surface effect plays an important role in its mechanical behavior. Based on the surface elasticity, we investigated the elastic fields around a spheroidal cavity embedded in an isotropic elastic medium subjected to arbitrary uniform loadings. Using th...

Full description

Saved in:
Bibliographic Details
Published in:European journal of mechanics, A, Solids A, Solids, 2009-01, Vol.28 (1), p.110-120
Main Authors: Ou, Z.Y., Wang, G.F., Wang, T.J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:When the size of a cavity shrinks to nanometers, surface effect plays an important role in its mechanical behavior. Based on the surface elasticity, we investigated the elastic fields around a spheroidal cavity embedded in an isotropic elastic medium subjected to arbitrary uniform loadings. Using the displacement potential functions method, we derived the general solution of elastic fields around a nanosized spheroidal cavity with surface effect. For six independent loading cases, the surface effects on the elastic fields around a cavity are presented in detail. It is shown that the elastic fields near a nanosized cavity depend not only on the shape and the size of the cavity but also on the residual surface tension and the surface elastic constants. The surface effect is different in different locations of the nanosized spheroidal cavity and under different remote loadings. The present results are clearly different from the classical ones, and are useful to the damage analysis and prediction of the effective moduli of heterogeneous materials containing nanosized cavities.
ISSN:0997-7538
1873-7285
DOI:10.1016/j.euromechsol.2008.05.001