Loading…
A particle swarm optimization for reactive power and voltage control considering voltage security assessment
This paper presents a particle swarm optimization (PSO) for reactive power and voltage control (volt/VAr control: VVC) considering voltage security assessment (VSA). VVC can be formulated as a mixed-integer nonlinear optimization problem (MINLP). The proposed method expands the original PSO to handl...
Saved in:
Published in: | IEEE transactions on power systems 2000-11, Vol.15 (4), p.1232-1239 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents a particle swarm optimization (PSO) for reactive power and voltage control (volt/VAr control: VVC) considering voltage security assessment (VSA). VVC can be formulated as a mixed-integer nonlinear optimization problem (MINLP). The proposed method expands the original PSO to handle a MINLP and determines an online VVC strategy with continuous and discrete control variables such as automatic voltage regulator (AVR) operating values of generators, tap positions of on-load tap changer (OLTC) of transformers, and the number of reactive power compensation equipment. The method considers voltage security using a continuation power flow and a contingency analysis technique. The feasibility of the proposed method is demonstrated and compared with reactive tabu search (RTS) and the enumeration method on practical power system models with promising results. |
---|---|
ISSN: | 0885-8950 1558-0679 |
DOI: | 10.1109/59.898095 |