Loading…

A particle swarm optimization for reactive power and voltage control considering voltage security assessment

This paper presents a particle swarm optimization (PSO) for reactive power and voltage control (volt/VAr control: VVC) considering voltage security assessment (VSA). VVC can be formulated as a mixed-integer nonlinear optimization problem (MINLP). The proposed method expands the original PSO to handl...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on power systems 2000-11, Vol.15 (4), p.1232-1239
Main Authors: Yoshida, H., Kawata, K., Fukuyama, Y., Takayama, S., Nakanishi, Y.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents a particle swarm optimization (PSO) for reactive power and voltage control (volt/VAr control: VVC) considering voltage security assessment (VSA). VVC can be formulated as a mixed-integer nonlinear optimization problem (MINLP). The proposed method expands the original PSO to handle a MINLP and determines an online VVC strategy with continuous and discrete control variables such as automatic voltage regulator (AVR) operating values of generators, tap positions of on-load tap changer (OLTC) of transformers, and the number of reactive power compensation equipment. The method considers voltage security using a continuation power flow and a contingency analysis technique. The feasibility of the proposed method is demonstrated and compared with reactive tabu search (RTS) and the enumeration method on practical power system models with promising results.
ISSN:0885-8950
1558-0679
DOI:10.1109/59.898095