Loading…
Three-dimensional optical pulse simulation using the FDTD method
As the use of optical waveguides expands, it would be desirable to have an explicit three-dimensional simulation method to analyze characteristics and develop new devices. One such method is the finite-difference time-domain (FDTD) method. The FDTD method requires a relatively high sampling density...
Saved in:
Published in: | IEEE transactions on microwave theory and techniques 2000-07, Vol.48 (7), p.1127-1133 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | As the use of optical waveguides expands, it would be desirable to have an explicit three-dimensional simulation method to analyze characteristics and develop new devices. One such method is the finite-difference time-domain (FDTD) method. The FDTD method requires a relatively high sampling density per wavelength, making simulation over distances of several wavelengths difficult. Several techniques are described to make such a simulation possible with limited computer resources. Among them is a moving problem space, which holds the pulse in the middle and moves the background medium past the pulse. Simultaneously, Fourier and wavelet analyses are used to characterize the pulse. |
---|---|
ISSN: | 0018-9480 1557-9670 |
DOI: | 10.1109/22.848495 |