Loading…

Multi-loop networked process control: A synchronized approach

Modern day process control uses digital controllers which are based on the principle of distributed rather than centralized control. Distributing controllers, sensors and actuators across a plant entails considerable wiring which can be reduced substantially by integrating the components of a contro...

Full description

Saved in:
Bibliographic Details
Published in:ISA transactions 2009, Vol.48 (1), p.122-131
Main Authors: Das, M., Ghosh, R., Goswami, B., Chandra, A.K., Balasubramanian, R., Luksch, P., Gupta, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Modern day process control uses digital controllers which are based on the principle of distributed rather than centralized control. Distributing controllers, sensors and actuators across a plant entails considerable wiring which can be reduced substantially by integrating the components of a control loop over a network. The other advantages include greater flexibility and higher reliability with lower hardware redundancy. The controllers and sensors are on a network and can take over the function of a failed component automatically, without the need of manual reconfiguration, thus eliminating the need of having a redundant component for each and every component. Though elaborate techniques have been developed for Single Input Single Output (SISO) systems, the major challenge lies in extending these ideas to control a practical process plant where de-centralized control is actually achieved through control of individual SISO control loops derived through de-coupling of the original system. Multiple loops increase network load and hence the sampling times associated with the control loops and makes synchronization difficult. This paper presents a methodology by which network based process control can be applied to practical process plants, with a simple direct synchronization mechanism.
ISSN:0019-0578
1879-2022
DOI:10.1016/j.isatra.2008.10.004