Loading…
Autocovariance preserving estimator (APE) interpretation of the MLSD metric for Rayleigh fading channels
This paper describes a new interpretation of the maximum-likelihood sequence detector metric for a linearly modulated signal and an unknown time-varying, dispersive, Rayleigh fading channel. The metric, which involves the channel and noise autocovariances, is transformed into the intuitive Mahalanob...
Saved in:
Published in: | IEEE transactions on communications 2000-10, Vol.48 (10), p.1614-1617 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c327t-71560d1933e5b8ff4ca4bfe4425c0f9efbc6be14220e3c4afae2f622df815b4f3 |
container_end_page | 1617 |
container_issue | 10 |
container_start_page | 1614 |
container_title | IEEE transactions on communications |
container_volume | 48 |
creator | Hart, B.D. Borah, D.K. Pasupathy, S. |
description | This paper describes a new interpretation of the maximum-likelihood sequence detector metric for a linearly modulated signal and an unknown time-varying, dispersive, Rayleigh fading channel. The metric, which involves the channel and noise autocovariances, is transformed into the intuitive Mahalanobis distance (squared Euclidean distance in white noise) between the observations and a reference estimated from them. A novel estimator, called the autocovariance preserving estimator, is obtained that trades off increased estimation bias for reduced sequence-error probability. |
doi_str_mv | 10.1109/26.871383 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_914638523</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>871383</ieee_id><sourcerecordid>27756247</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-71560d1933e5b8ff4ca4bfe4425c0f9efbc6be14220e3c4afae2f622df815b4f3</originalsourceid><addsrcrecordid>eNqF0U1rGzEQBmARWojr9pBrTqKHNjmso8-V9micT3BpaJvzopVHtsx65UqyIf8-Mg459NCc5jAPL7wzCJ1RMqGUNFesnmhFueYnaESl1BXRUn1AI0IaUtVK6VP0KaU1IUQQzkdoNd3lYMPeRG8GC3gbIUHc-2GJIWW_MTlEfDF9vLnEfsgQyz6b7MOAg8N5BfjH_Pc13kCO3mJX7C_z3INfrrAzi0OKXZlhgD59Rh-d6RN8eZ1j9HR782d2X81_3j3MpvPKcqZypaisyYI2nIPstHPCGtE5EIJJS1wDrrN1B1QwRoBbYZwB5mrGFk5T2QnHx-j7MXcbw99d6dBufLLQ92aAsEttQ0XNtWS8yG__lUzLhlLRvA-VkjUTqsCv_8B12MWh1G21lodmUhd0eUQ2hpQiuHYby53jc0tJe_hhy-r2-MNiz4_WA8Cbe12-AOKMlrM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>885156058</pqid></control><display><type>article</type><title>Autocovariance preserving estimator (APE) interpretation of the MLSD metric for Rayleigh fading channels</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Hart, B.D. ; Borah, D.K. ; Pasupathy, S.</creator><creatorcontrib>Hart, B.D. ; Borah, D.K. ; Pasupathy, S.</creatorcontrib><description>This paper describes a new interpretation of the maximum-likelihood sequence detector metric for a linearly modulated signal and an unknown time-varying, dispersive, Rayleigh fading channel. The metric, which involves the channel and noise autocovariances, is transformed into the intuitive Mahalanobis distance (squared Euclidean distance in white noise) between the observations and a reference estimated from them. A novel estimator, called the autocovariance preserving estimator, is obtained that trades off increased estimation bias for reduced sequence-error probability.</description><identifier>ISSN: 0090-6778</identifier><identifier>EISSN: 1558-0857</identifier><identifier>DOI: 10.1109/26.871383</identifier><identifier>CODEN: IECMBT</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Additive noise ; Bias ; Channels ; Detectors ; Dispersion ; Estimators ; Euclidean distance ; Fading ; Filtering ; Gaussian noise ; Maximum likelihood detection ; Maximum likelihood estimation ; Noise ; Preserving ; Rayleigh channels ; White noise</subject><ispartof>IEEE transactions on communications, 2000-10, Vol.48 (10), p.1614-1617</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c327t-71560d1933e5b8ff4ca4bfe4425c0f9efbc6be14220e3c4afae2f622df815b4f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/871383$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Hart, B.D.</creatorcontrib><creatorcontrib>Borah, D.K.</creatorcontrib><creatorcontrib>Pasupathy, S.</creatorcontrib><title>Autocovariance preserving estimator (APE) interpretation of the MLSD metric for Rayleigh fading channels</title><title>IEEE transactions on communications</title><addtitle>TCOMM</addtitle><description>This paper describes a new interpretation of the maximum-likelihood sequence detector metric for a linearly modulated signal and an unknown time-varying, dispersive, Rayleigh fading channel. The metric, which involves the channel and noise autocovariances, is transformed into the intuitive Mahalanobis distance (squared Euclidean distance in white noise) between the observations and a reference estimated from them. A novel estimator, called the autocovariance preserving estimator, is obtained that trades off increased estimation bias for reduced sequence-error probability.</description><subject>Additive noise</subject><subject>Bias</subject><subject>Channels</subject><subject>Detectors</subject><subject>Dispersion</subject><subject>Estimators</subject><subject>Euclidean distance</subject><subject>Fading</subject><subject>Filtering</subject><subject>Gaussian noise</subject><subject>Maximum likelihood detection</subject><subject>Maximum likelihood estimation</subject><subject>Noise</subject><subject>Preserving</subject><subject>Rayleigh channels</subject><subject>White noise</subject><issn>0090-6778</issn><issn>1558-0857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqF0U1rGzEQBmARWojr9pBrTqKHNjmso8-V9micT3BpaJvzopVHtsx65UqyIf8-Mg459NCc5jAPL7wzCJ1RMqGUNFesnmhFueYnaESl1BXRUn1AI0IaUtVK6VP0KaU1IUQQzkdoNd3lYMPeRG8GC3gbIUHc-2GJIWW_MTlEfDF9vLnEfsgQyz6b7MOAg8N5BfjH_Pc13kCO3mJX7C_z3INfrrAzi0OKXZlhgD59Rh-d6RN8eZ1j9HR782d2X81_3j3MpvPKcqZypaisyYI2nIPstHPCGtE5EIJJS1wDrrN1B1QwRoBbYZwB5mrGFk5T2QnHx-j7MXcbw99d6dBufLLQ92aAsEttQ0XNtWS8yG__lUzLhlLRvA-VkjUTqsCv_8B12MWh1G21lodmUhd0eUQ2hpQiuHYby53jc0tJe_hhy-r2-MNiz4_WA8Cbe12-AOKMlrM</recordid><startdate>20001001</startdate><enddate>20001001</enddate><creator>Hart, B.D.</creator><creator>Borah, D.K.</creator><creator>Pasupathy, S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20001001</creationdate><title>Autocovariance preserving estimator (APE) interpretation of the MLSD metric for Rayleigh fading channels</title><author>Hart, B.D. ; Borah, D.K. ; Pasupathy, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-71560d1933e5b8ff4ca4bfe4425c0f9efbc6be14220e3c4afae2f622df815b4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Additive noise</topic><topic>Bias</topic><topic>Channels</topic><topic>Detectors</topic><topic>Dispersion</topic><topic>Estimators</topic><topic>Euclidean distance</topic><topic>Fading</topic><topic>Filtering</topic><topic>Gaussian noise</topic><topic>Maximum likelihood detection</topic><topic>Maximum likelihood estimation</topic><topic>Noise</topic><topic>Preserving</topic><topic>Rayleigh channels</topic><topic>White noise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hart, B.D.</creatorcontrib><creatorcontrib>Borah, D.K.</creatorcontrib><creatorcontrib>Pasupathy, S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hart, B.D.</au><au>Borah, D.K.</au><au>Pasupathy, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Autocovariance preserving estimator (APE) interpretation of the MLSD metric for Rayleigh fading channels</atitle><jtitle>IEEE transactions on communications</jtitle><stitle>TCOMM</stitle><date>2000-10-01</date><risdate>2000</risdate><volume>48</volume><issue>10</issue><spage>1614</spage><epage>1617</epage><pages>1614-1617</pages><issn>0090-6778</issn><eissn>1558-0857</eissn><coden>IECMBT</coden><abstract>This paper describes a new interpretation of the maximum-likelihood sequence detector metric for a linearly modulated signal and an unknown time-varying, dispersive, Rayleigh fading channel. The metric, which involves the channel and noise autocovariances, is transformed into the intuitive Mahalanobis distance (squared Euclidean distance in white noise) between the observations and a reference estimated from them. A novel estimator, called the autocovariance preserving estimator, is obtained that trades off increased estimation bias for reduced sequence-error probability.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/26.871383</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0090-6778 |
ispartof | IEEE transactions on communications, 2000-10, Vol.48 (10), p.1614-1617 |
issn | 0090-6778 1558-0857 |
language | eng |
recordid | cdi_proquest_miscellaneous_914638523 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Additive noise Bias Channels Detectors Dispersion Estimators Euclidean distance Fading Filtering Gaussian noise Maximum likelihood detection Maximum likelihood estimation Noise Preserving Rayleigh channels White noise |
title | Autocovariance preserving estimator (APE) interpretation of the MLSD metric for Rayleigh fading channels |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A48%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Autocovariance%20preserving%20estimator%20(APE)%20interpretation%20of%20the%20MLSD%20metric%20for%20Rayleigh%20fading%20channels&rft.jtitle=IEEE%20transactions%20on%20communications&rft.au=Hart,%20B.D.&rft.date=2000-10-01&rft.volume=48&rft.issue=10&rft.spage=1614&rft.epage=1617&rft.pages=1614-1617&rft.issn=0090-6778&rft.eissn=1558-0857&rft.coden=IECMBT&rft_id=info:doi/10.1109/26.871383&rft_dat=%3Cproquest_cross%3E27756247%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-71560d1933e5b8ff4ca4bfe4425c0f9efbc6be14220e3c4afae2f622df815b4f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=885156058&rft_id=info:pmid/&rft_ieee_id=871383&rfr_iscdi=true |