Loading…

Autocovariance preserving estimator (APE) interpretation of the MLSD metric for Rayleigh fading channels

This paper describes a new interpretation of the maximum-likelihood sequence detector metric for a linearly modulated signal and an unknown time-varying, dispersive, Rayleigh fading channel. The metric, which involves the channel and noise autocovariances, is transformed into the intuitive Mahalanob...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on communications 2000-10, Vol.48 (10), p.1614-1617
Main Authors: Hart, B.D., Borah, D.K., Pasupathy, S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c327t-71560d1933e5b8ff4ca4bfe4425c0f9efbc6be14220e3c4afae2f622df815b4f3
container_end_page 1617
container_issue 10
container_start_page 1614
container_title IEEE transactions on communications
container_volume 48
creator Hart, B.D.
Borah, D.K.
Pasupathy, S.
description This paper describes a new interpretation of the maximum-likelihood sequence detector metric for a linearly modulated signal and an unknown time-varying, dispersive, Rayleigh fading channel. The metric, which involves the channel and noise autocovariances, is transformed into the intuitive Mahalanobis distance (squared Euclidean distance in white noise) between the observations and a reference estimated from them. A novel estimator, called the autocovariance preserving estimator, is obtained that trades off increased estimation bias for reduced sequence-error probability.
doi_str_mv 10.1109/26.871383
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_914638523</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>871383</ieee_id><sourcerecordid>27756247</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-71560d1933e5b8ff4ca4bfe4425c0f9efbc6be14220e3c4afae2f622df815b4f3</originalsourceid><addsrcrecordid>eNqF0U1rGzEQBmARWojr9pBrTqKHNjmso8-V9micT3BpaJvzopVHtsx65UqyIf8-Mg459NCc5jAPL7wzCJ1RMqGUNFesnmhFueYnaESl1BXRUn1AI0IaUtVK6VP0KaU1IUQQzkdoNd3lYMPeRG8GC3gbIUHc-2GJIWW_MTlEfDF9vLnEfsgQyz6b7MOAg8N5BfjH_Pc13kCO3mJX7C_z3INfrrAzi0OKXZlhgD59Rh-d6RN8eZ1j9HR782d2X81_3j3MpvPKcqZypaisyYI2nIPstHPCGtE5EIJJS1wDrrN1B1QwRoBbYZwB5mrGFk5T2QnHx-j7MXcbw99d6dBufLLQ92aAsEttQ0XNtWS8yG__lUzLhlLRvA-VkjUTqsCv_8B12MWh1G21lodmUhd0eUQ2hpQiuHYby53jc0tJe_hhy-r2-MNiz4_WA8Cbe12-AOKMlrM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>885156058</pqid></control><display><type>article</type><title>Autocovariance preserving estimator (APE) interpretation of the MLSD metric for Rayleigh fading channels</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Hart, B.D. ; Borah, D.K. ; Pasupathy, S.</creator><creatorcontrib>Hart, B.D. ; Borah, D.K. ; Pasupathy, S.</creatorcontrib><description>This paper describes a new interpretation of the maximum-likelihood sequence detector metric for a linearly modulated signal and an unknown time-varying, dispersive, Rayleigh fading channel. The metric, which involves the channel and noise autocovariances, is transformed into the intuitive Mahalanobis distance (squared Euclidean distance in white noise) between the observations and a reference estimated from them. A novel estimator, called the autocovariance preserving estimator, is obtained that trades off increased estimation bias for reduced sequence-error probability.</description><identifier>ISSN: 0090-6778</identifier><identifier>EISSN: 1558-0857</identifier><identifier>DOI: 10.1109/26.871383</identifier><identifier>CODEN: IECMBT</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Additive noise ; Bias ; Channels ; Detectors ; Dispersion ; Estimators ; Euclidean distance ; Fading ; Filtering ; Gaussian noise ; Maximum likelihood detection ; Maximum likelihood estimation ; Noise ; Preserving ; Rayleigh channels ; White noise</subject><ispartof>IEEE transactions on communications, 2000-10, Vol.48 (10), p.1614-1617</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c327t-71560d1933e5b8ff4ca4bfe4425c0f9efbc6be14220e3c4afae2f622df815b4f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/871383$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Hart, B.D.</creatorcontrib><creatorcontrib>Borah, D.K.</creatorcontrib><creatorcontrib>Pasupathy, S.</creatorcontrib><title>Autocovariance preserving estimator (APE) interpretation of the MLSD metric for Rayleigh fading channels</title><title>IEEE transactions on communications</title><addtitle>TCOMM</addtitle><description>This paper describes a new interpretation of the maximum-likelihood sequence detector metric for a linearly modulated signal and an unknown time-varying, dispersive, Rayleigh fading channel. The metric, which involves the channel and noise autocovariances, is transformed into the intuitive Mahalanobis distance (squared Euclidean distance in white noise) between the observations and a reference estimated from them. A novel estimator, called the autocovariance preserving estimator, is obtained that trades off increased estimation bias for reduced sequence-error probability.</description><subject>Additive noise</subject><subject>Bias</subject><subject>Channels</subject><subject>Detectors</subject><subject>Dispersion</subject><subject>Estimators</subject><subject>Euclidean distance</subject><subject>Fading</subject><subject>Filtering</subject><subject>Gaussian noise</subject><subject>Maximum likelihood detection</subject><subject>Maximum likelihood estimation</subject><subject>Noise</subject><subject>Preserving</subject><subject>Rayleigh channels</subject><subject>White noise</subject><issn>0090-6778</issn><issn>1558-0857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqF0U1rGzEQBmARWojr9pBrTqKHNjmso8-V9micT3BpaJvzopVHtsx65UqyIf8-Mg459NCc5jAPL7wzCJ1RMqGUNFesnmhFueYnaESl1BXRUn1AI0IaUtVK6VP0KaU1IUQQzkdoNd3lYMPeRG8GC3gbIUHc-2GJIWW_MTlEfDF9vLnEfsgQyz6b7MOAg8N5BfjH_Pc13kCO3mJX7C_z3INfrrAzi0OKXZlhgD59Rh-d6RN8eZ1j9HR782d2X81_3j3MpvPKcqZypaisyYI2nIPstHPCGtE5EIJJS1wDrrN1B1QwRoBbYZwB5mrGFk5T2QnHx-j7MXcbw99d6dBufLLQ92aAsEttQ0XNtWS8yG__lUzLhlLRvA-VkjUTqsCv_8B12MWh1G21lodmUhd0eUQ2hpQiuHYby53jc0tJe_hhy-r2-MNiz4_WA8Cbe12-AOKMlrM</recordid><startdate>20001001</startdate><enddate>20001001</enddate><creator>Hart, B.D.</creator><creator>Borah, D.K.</creator><creator>Pasupathy, S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20001001</creationdate><title>Autocovariance preserving estimator (APE) interpretation of the MLSD metric for Rayleigh fading channels</title><author>Hart, B.D. ; Borah, D.K. ; Pasupathy, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-71560d1933e5b8ff4ca4bfe4425c0f9efbc6be14220e3c4afae2f622df815b4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Additive noise</topic><topic>Bias</topic><topic>Channels</topic><topic>Detectors</topic><topic>Dispersion</topic><topic>Estimators</topic><topic>Euclidean distance</topic><topic>Fading</topic><topic>Filtering</topic><topic>Gaussian noise</topic><topic>Maximum likelihood detection</topic><topic>Maximum likelihood estimation</topic><topic>Noise</topic><topic>Preserving</topic><topic>Rayleigh channels</topic><topic>White noise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hart, B.D.</creatorcontrib><creatorcontrib>Borah, D.K.</creatorcontrib><creatorcontrib>Pasupathy, S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hart, B.D.</au><au>Borah, D.K.</au><au>Pasupathy, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Autocovariance preserving estimator (APE) interpretation of the MLSD metric for Rayleigh fading channels</atitle><jtitle>IEEE transactions on communications</jtitle><stitle>TCOMM</stitle><date>2000-10-01</date><risdate>2000</risdate><volume>48</volume><issue>10</issue><spage>1614</spage><epage>1617</epage><pages>1614-1617</pages><issn>0090-6778</issn><eissn>1558-0857</eissn><coden>IECMBT</coden><abstract>This paper describes a new interpretation of the maximum-likelihood sequence detector metric for a linearly modulated signal and an unknown time-varying, dispersive, Rayleigh fading channel. The metric, which involves the channel and noise autocovariances, is transformed into the intuitive Mahalanobis distance (squared Euclidean distance in white noise) between the observations and a reference estimated from them. A novel estimator, called the autocovariance preserving estimator, is obtained that trades off increased estimation bias for reduced sequence-error probability.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/26.871383</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0090-6778
ispartof IEEE transactions on communications, 2000-10, Vol.48 (10), p.1614-1617
issn 0090-6778
1558-0857
language eng
recordid cdi_proquest_miscellaneous_914638523
source IEEE Electronic Library (IEL) Journals
subjects Additive noise
Bias
Channels
Detectors
Dispersion
Estimators
Euclidean distance
Fading
Filtering
Gaussian noise
Maximum likelihood detection
Maximum likelihood estimation
Noise
Preserving
Rayleigh channels
White noise
title Autocovariance preserving estimator (APE) interpretation of the MLSD metric for Rayleigh fading channels
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A48%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Autocovariance%20preserving%20estimator%20(APE)%20interpretation%20of%20the%20MLSD%20metric%20for%20Rayleigh%20fading%20channels&rft.jtitle=IEEE%20transactions%20on%20communications&rft.au=Hart,%20B.D.&rft.date=2000-10-01&rft.volume=48&rft.issue=10&rft.spage=1614&rft.epage=1617&rft.pages=1614-1617&rft.issn=0090-6778&rft.eissn=1558-0857&rft.coden=IECMBT&rft_id=info:doi/10.1109/26.871383&rft_dat=%3Cproquest_cross%3E27756247%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-71560d1933e5b8ff4ca4bfe4425c0f9efbc6be14220e3c4afae2f622df815b4f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=885156058&rft_id=info:pmid/&rft_ieee_id=871383&rfr_iscdi=true