Loading…

Block-based neural networks

This paper presents a novel block-based neural network (BBNN) model and the optimization of its structure and weights based on a genetic algorithm. The architecture of the BBNN consists of a 2D array of fundamental blocks with four variable input/output nodes and connection weights. Each block can h...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transaction on neural networks and learning systems 2001-03, Vol.12 (2), p.307-317
Main Authors: Moon, S W, Kong, S G
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c422t-728b56fedbe67258a31151b246f43ddd034f319373820f8961b18f7291cce12c3
cites cdi_FETCH-LOGICAL-c422t-728b56fedbe67258a31151b246f43ddd034f319373820f8961b18f7291cce12c3
container_end_page 317
container_issue 2
container_start_page 307
container_title IEEE transaction on neural networks and learning systems
container_volume 12
creator Moon, S W
Kong, S G
description This paper presents a novel block-based neural network (BBNN) model and the optimization of its structure and weights based on a genetic algorithm. The architecture of the BBNN consists of a 2D array of fundamental blocks with four variable input/output nodes and connection weights. Each block can have one of four different internal configurations depending on the structure settings, The BBNN model includes some restrictions such as 2D array and integer weights in order to allow easier implementation with reconfigurable hardware such as field programmable logic arrays (FPGA). The structure and weights of the BBNN are encoded with bit strings which correspond to the configuration bits of FPGA. The configuration bits are optimized globally using a genetic algorithm with 2D encoding and modified genetic operators. Simulations show that the optimized BBNN can solve engineering problems such as pattern classification and mobile robot control.
doi_str_mv 10.1109/72.914525
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_914640510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>914525</ieee_id><sourcerecordid>28189599</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-728b56fedbe67258a31151b246f43ddd034f319373820f8961b18f7291cce12c3</originalsourceid><addsrcrecordid>eNqF0U1LAzEQBuAgiq3Vg1cFEQ-Kh62ZyfdRi19Q8KLnsJvNQttttyZdxH9vZBcFD_Y0gXkyMPMScgx0DEDNjcKxAS5Q7JAhGA4ZpYbtpjflIjOIakAOYpxTmhCV-2QAGjlnWgzJ6V3duEVW5NGX5yvfhrxOZfPRhEU8JHtVXkd_1NcReXu4f508ZdOXx-fJ7TRzHHGTKdSFkJUvCy8VCp0zAAEFcllxVpYlZbxiYJhiGmmljYQCdKXQgHMe0LERuermrkPz3vq4sctZdL6u85Vv2mjTbpJTAXSrVIxxwaQRSV7-K1GDNsKY7VBKxgzHBC_-wHnThlU6jDVItVSM6oSuO-RCE2PwlV2H2TIPnxao_c7KKrRdVsme9QPbYunLX9mHk8BJB2be-592__sLsI6Rpw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>920867308</pqid></control><display><type>article</type><title>Block-based neural networks</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Moon, S W ; Kong, S G</creator><creatorcontrib>Moon, S W ; Kong, S G</creatorcontrib><description>This paper presents a novel block-based neural network (BBNN) model and the optimization of its structure and weights based on a genetic algorithm. The architecture of the BBNN consists of a 2D array of fundamental blocks with four variable input/output nodes and connection weights. Each block can have one of four different internal configurations depending on the structure settings, The BBNN model includes some restrictions such as 2D array and integer weights in order to allow easier implementation with reconfigurable hardware such as field programmable logic arrays (FPGA). The structure and weights of the BBNN are encoded with bit strings which correspond to the configuration bits of FPGA. The configuration bits are optimized globally using a genetic algorithm with 2D encoding and modified genetic operators. Simulations show that the optimized BBNN can solve engineering problems such as pattern classification and mobile robot control.</description><identifier>ISSN: 1045-9227</identifier><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 1941-0093</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/72.914525</identifier><identifier>PMID: 18244385</identifier><identifier>CODEN: ITNNEP</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Arrays ; Blocking ; Computer simulation ; Encoding ; Field programmable gate arrays ; Genetic algorithms ; Hardware ; Logic ; Mobile robots ; Neural networks ; Pattern classification ; Programmable logic arrays ; Reconfigurable logic ; Robot control ; Two dimensional</subject><ispartof>IEEE transaction on neural networks and learning systems, 2001-03, Vol.12 (2), p.307-317</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-728b56fedbe67258a31151b246f43ddd034f319373820f8961b18f7291cce12c3</citedby><cites>FETCH-LOGICAL-c422t-728b56fedbe67258a31151b246f43ddd034f319373820f8961b18f7291cce12c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/914525$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,54794</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18244385$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Moon, S W</creatorcontrib><creatorcontrib>Kong, S G</creatorcontrib><title>Block-based neural networks</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNN</addtitle><addtitle>IEEE Trans Neural Netw</addtitle><description>This paper presents a novel block-based neural network (BBNN) model and the optimization of its structure and weights based on a genetic algorithm. The architecture of the BBNN consists of a 2D array of fundamental blocks with four variable input/output nodes and connection weights. Each block can have one of four different internal configurations depending on the structure settings, The BBNN model includes some restrictions such as 2D array and integer weights in order to allow easier implementation with reconfigurable hardware such as field programmable logic arrays (FPGA). The structure and weights of the BBNN are encoded with bit strings which correspond to the configuration bits of FPGA. The configuration bits are optimized globally using a genetic algorithm with 2D encoding and modified genetic operators. Simulations show that the optimized BBNN can solve engineering problems such as pattern classification and mobile robot control.</description><subject>Arrays</subject><subject>Blocking</subject><subject>Computer simulation</subject><subject>Encoding</subject><subject>Field programmable gate arrays</subject><subject>Genetic algorithms</subject><subject>Hardware</subject><subject>Logic</subject><subject>Mobile robots</subject><subject>Neural networks</subject><subject>Pattern classification</subject><subject>Programmable logic arrays</subject><subject>Reconfigurable logic</subject><subject>Robot control</subject><subject>Two dimensional</subject><issn>1045-9227</issn><issn>2162-237X</issn><issn>1941-0093</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqF0U1LAzEQBuAgiq3Vg1cFEQ-Kh62ZyfdRi19Q8KLnsJvNQttttyZdxH9vZBcFD_Y0gXkyMPMScgx0DEDNjcKxAS5Q7JAhGA4ZpYbtpjflIjOIakAOYpxTmhCV-2QAGjlnWgzJ6V3duEVW5NGX5yvfhrxOZfPRhEU8JHtVXkd_1NcReXu4f508ZdOXx-fJ7TRzHHGTKdSFkJUvCy8VCp0zAAEFcllxVpYlZbxiYJhiGmmljYQCdKXQgHMe0LERuermrkPz3vq4sctZdL6u85Vv2mjTbpJTAXSrVIxxwaQRSV7-K1GDNsKY7VBKxgzHBC_-wHnThlU6jDVItVSM6oSuO-RCE2PwlV2H2TIPnxao_c7KKrRdVsme9QPbYunLX9mHk8BJB2be-592__sLsI6Rpw</recordid><startdate>20010301</startdate><enddate>20010301</enddate><creator>Moon, S W</creator><creator>Kong, S G</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20010301</creationdate><title>Block-based neural networks</title><author>Moon, S W ; Kong, S G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-728b56fedbe67258a31151b246f43ddd034f319373820f8961b18f7291cce12c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Arrays</topic><topic>Blocking</topic><topic>Computer simulation</topic><topic>Encoding</topic><topic>Field programmable gate arrays</topic><topic>Genetic algorithms</topic><topic>Hardware</topic><topic>Logic</topic><topic>Mobile robots</topic><topic>Neural networks</topic><topic>Pattern classification</topic><topic>Programmable logic arrays</topic><topic>Reconfigurable logic</topic><topic>Robot control</topic><topic>Two dimensional</topic><toplevel>online_resources</toplevel><creatorcontrib>Moon, S W</creatorcontrib><creatorcontrib>Kong, S G</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moon, S W</au><au>Kong, S G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Block-based neural networks</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNN</stitle><addtitle>IEEE Trans Neural Netw</addtitle><date>2001-03-01</date><risdate>2001</risdate><volume>12</volume><issue>2</issue><spage>307</spage><epage>317</epage><pages>307-317</pages><issn>1045-9227</issn><issn>2162-237X</issn><eissn>1941-0093</eissn><eissn>2162-2388</eissn><coden>ITNNEP</coden><abstract>This paper presents a novel block-based neural network (BBNN) model and the optimization of its structure and weights based on a genetic algorithm. The architecture of the BBNN consists of a 2D array of fundamental blocks with four variable input/output nodes and connection weights. Each block can have one of four different internal configurations depending on the structure settings, The BBNN model includes some restrictions such as 2D array and integer weights in order to allow easier implementation with reconfigurable hardware such as field programmable logic arrays (FPGA). The structure and weights of the BBNN are encoded with bit strings which correspond to the configuration bits of FPGA. The configuration bits are optimized globally using a genetic algorithm with 2D encoding and modified genetic operators. Simulations show that the optimized BBNN can solve engineering problems such as pattern classification and mobile robot control.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>18244385</pmid><doi>10.1109/72.914525</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1045-9227
ispartof IEEE transaction on neural networks and learning systems, 2001-03, Vol.12 (2), p.307-317
issn 1045-9227
2162-237X
1941-0093
2162-2388
language eng
recordid cdi_proquest_miscellaneous_914640510
source IEEE Electronic Library (IEL) Journals
subjects Arrays
Blocking
Computer simulation
Encoding
Field programmable gate arrays
Genetic algorithms
Hardware
Logic
Mobile robots
Neural networks
Pattern classification
Programmable logic arrays
Reconfigurable logic
Robot control
Two dimensional
title Block-based neural networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T06%3A44%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Block-based%20neural%20networks&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Moon,%20S%20W&rft.date=2001-03-01&rft.volume=12&rft.issue=2&rft.spage=307&rft.epage=317&rft.pages=307-317&rft.issn=1045-9227&rft.eissn=1941-0093&rft.coden=ITNNEP&rft_id=info:doi/10.1109/72.914525&rft_dat=%3Cproquest_ieee_%3E28189599%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c422t-728b56fedbe67258a31151b246f43ddd034f319373820f8961b18f7291cce12c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=920867308&rft_id=info:pmid/18244385&rft_ieee_id=914525&rfr_iscdi=true