Loading…
Performance benefits of hybrid control design for linear and nonlinear systems
This paper provides an overview of recent developments on design of hybrid controllers for continuous-time control systems that can be described by linear or nonlinear differential state equations. Hybrid controllers provide a generalization of classical feedback controllers for linear and nonlinear...
Saved in:
Published in: | Proceedings of the IEEE 2000, Vol.88 (7), p.1083-1096 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper provides an overview of recent developments on design of hybrid controllers for continuous-time control systems that can be described by linear or nonlinear differential state equations. Hybrid controllers provide a generalization of classical feedback controllers for linear and nonlinear systems. The benefit of hybrid controllers, that they can be used to achieve closed-loop performance objectives that cannot be achieved using classical linear or nonlinear controllers, is emphasized. This paper introduces hybrid controllers in the form of a switching control architecture and provides a summary of recently developed control approaches that utilize this control architecture. We provide a conceptual framework for these results, identify limitations of the results, and discuss the current status of hybrid control design approaches. |
---|---|
ISSN: | 0018-9219 1558-2256 |
DOI: | 10.1109/5.871310 |