Loading…

Superconducting Double Dipole High Field Magnet

Recent progress in Nb 3 Sn superconductor technology provides the base for increasing magnet field in accelerator magnets up to 15-16 T. The work on such magnets based on both block-type and shell-type coils are in progress at Fermilab, LBNL and elsewhere. One of the novel approaches to the design o...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on applied superconductivity 2006-06, Vol.16 (2), p.1274-1277
Main Authors: Kashikhin, V.S., Andreev, N., Kashikhin, V.V., Novitski, I., Zlobin, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c267t-8a513e9c6d55a788901a4ec32f771819632e7e722f61a8b4a142b9fc2f41b5b53
cites cdi_FETCH-LOGICAL-c267t-8a513e9c6d55a788901a4ec32f771819632e7e722f61a8b4a142b9fc2f41b5b53
container_end_page 1277
container_issue 2
container_start_page 1274
container_title IEEE transactions on applied superconductivity
container_volume 16
creator Kashikhin, V.S.
Andreev, N.
Kashikhin, V.V.
Novitski, I.
Zlobin, A.
description Recent progress in Nb 3 Sn superconductor technology provides the base for increasing magnet field in accelerator magnets up to 15-16 T. The work on such magnets based on both block-type and shell-type coils are in progress at Fermilab, LBNL and elsewhere. One of the novel approaches to the design of this magnet is to split the magnet winding into two separate dipole windings powered in series or separately. Each winding generates a homogeneous magnetic field in the magnet aperture. The paper presents conceptual magnetic and mechanical designs of 15 T double dipole magnets and discusses several scenarios of magnet powering. The inner dipole winding is based on the 2-layer Nb 3 Sn coils previously developed and tested at Fermilab. The outer dipole winding is made of sub-sized Nb 3 Sn cable and has about two times higher current density. Both windings have the shell-type configuration. For the different powering scenarios the results of calculation of the field quality, coil magnetization effects, and the stress analysis are presented
doi_str_mv 10.1109/TASC.2005.864299
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_914643649</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1643083</ieee_id><sourcerecordid>2544630351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c267t-8a513e9c6d55a788901a4ec32f771819632e7e722f61a8b4a142b9fc2f41b5b53</originalsourceid><addsrcrecordid>eNpdkM9LwzAcxYMoOKd3wUsRxFO3fPOjSY5jcypMPGyeQ5qls6Nra9Ie_O_N6GDg6X3h-3mPx0PoHvAEAKvpZraeTwjGfCIzRpS6QCPgXKaEA7-MN-aQSkLoNboJYY8xMMn4CE3Xfeu8beptb7uy3iWLps8rlyzKtonyVu6-k2Xpqm3yYXa1627RVWGq4O5OOkZfy5fN_C1dfb6-z2er1JJMdKk0HKhTNttyboSUCoNhzlJSCAESVEaJE04QUmRgZM4MMJKrwpKCQc5zTsfoechtffPTu9DpQxmsqypTu6YPWgHLGM2YiuTjP3Lf9L6O5SJECBZMQoTwAFnfhOBdoVtfHoz_1YD1cT993E8f99PDftHydMo1wZqq8Ka2ZTj7hGJKcBy5h4ErnXPnd2yHJaV_UVd15Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912207481</pqid></control><display><type>article</type><title>Superconducting Double Dipole High Field Magnet</title><source>IEEE Xplore (Online service)</source><creator>Kashikhin, V.S. ; Andreev, N. ; Kashikhin, V.V. ; Novitski, I. ; Zlobin, A.</creator><creatorcontrib>Kashikhin, V.S. ; Andreev, N. ; Kashikhin, V.V. ; Novitski, I. ; Zlobin, A.</creatorcontrib><description>Recent progress in Nb 3 Sn superconductor technology provides the base for increasing magnet field in accelerator magnets up to 15-16 T. The work on such magnets based on both block-type and shell-type coils are in progress at Fermilab, LBNL and elsewhere. One of the novel approaches to the design of this magnet is to split the magnet winding into two separate dipole windings powered in series or separately. Each winding generates a homogeneous magnetic field in the magnet aperture. The paper presents conceptual magnetic and mechanical designs of 15 T double dipole magnets and discusses several scenarios of magnet powering. The inner dipole winding is based on the 2-layer Nb 3 Sn coils previously developed and tested at Fermilab. The outer dipole winding is made of sub-sized Nb 3 Sn cable and has about two times higher current density. Both windings have the shell-type configuration. For the different powering scenarios the results of calculation of the field quality, coil magnetization effects, and the stress analysis are presented</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2005.864299</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Accelerator magnets ; Accelerators ; Apertures ; Applied sciences ; Coils ; Current density ; Design engineering ; Dipole ; Dipoles ; Electrical engineering. Electrical power engineering ; Electromagnets ; Electronic equipment and fabrication. Passive components, printed wiring boards, connectics ; Electronics ; Electrons ; Exact sciences and technology ; High field magnets ; Magnetic fields ; Magnetic separation ; Mathematical analysis ; Niobium ; Power electronics, power supplies ; Superconducting coils ; superconducting magnet ; Superconducting magnets ; Superconductivity ; Superconductors ; Testing ; Tin ; Various equipment and components ; Winding</subject><ispartof>IEEE transactions on applied superconductivity, 2006-06, Vol.16 (2), p.1274-1277</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c267t-8a513e9c6d55a788901a4ec32f771819632e7e722f61a8b4a142b9fc2f41b5b53</citedby><cites>FETCH-LOGICAL-c267t-8a513e9c6d55a788901a4ec32f771819632e7e722f61a8b4a142b9fc2f41b5b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1643083$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17949750$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kashikhin, V.S.</creatorcontrib><creatorcontrib>Andreev, N.</creatorcontrib><creatorcontrib>Kashikhin, V.V.</creatorcontrib><creatorcontrib>Novitski, I.</creatorcontrib><creatorcontrib>Zlobin, A.</creatorcontrib><title>Superconducting Double Dipole High Field Magnet</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>Recent progress in Nb 3 Sn superconductor technology provides the base for increasing magnet field in accelerator magnets up to 15-16 T. The work on such magnets based on both block-type and shell-type coils are in progress at Fermilab, LBNL and elsewhere. One of the novel approaches to the design of this magnet is to split the magnet winding into two separate dipole windings powered in series or separately. Each winding generates a homogeneous magnetic field in the magnet aperture. The paper presents conceptual magnetic and mechanical designs of 15 T double dipole magnets and discusses several scenarios of magnet powering. The inner dipole winding is based on the 2-layer Nb 3 Sn coils previously developed and tested at Fermilab. The outer dipole winding is made of sub-sized Nb 3 Sn cable and has about two times higher current density. Both windings have the shell-type configuration. For the different powering scenarios the results of calculation of the field quality, coil magnetization effects, and the stress analysis are presented</description><subject>Accelerator magnets</subject><subject>Accelerators</subject><subject>Apertures</subject><subject>Applied sciences</subject><subject>Coils</subject><subject>Current density</subject><subject>Design engineering</subject><subject>Dipole</subject><subject>Dipoles</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electromagnets</subject><subject>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</subject><subject>Electronics</subject><subject>Electrons</subject><subject>Exact sciences and technology</subject><subject>High field magnets</subject><subject>Magnetic fields</subject><subject>Magnetic separation</subject><subject>Mathematical analysis</subject><subject>Niobium</subject><subject>Power electronics, power supplies</subject><subject>Superconducting coils</subject><subject>superconducting magnet</subject><subject>Superconducting magnets</subject><subject>Superconductivity</subject><subject>Superconductors</subject><subject>Testing</subject><subject>Tin</subject><subject>Various equipment and components</subject><subject>Winding</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNpdkM9LwzAcxYMoOKd3wUsRxFO3fPOjSY5jcypMPGyeQ5qls6Nra9Ie_O_N6GDg6X3h-3mPx0PoHvAEAKvpZraeTwjGfCIzRpS6QCPgXKaEA7-MN-aQSkLoNboJYY8xMMn4CE3Xfeu8beptb7uy3iWLps8rlyzKtonyVu6-k2Xpqm3yYXa1627RVWGq4O5OOkZfy5fN_C1dfb6-z2er1JJMdKk0HKhTNttyboSUCoNhzlJSCAESVEaJE04QUmRgZM4MMJKrwpKCQc5zTsfoechtffPTu9DpQxmsqypTu6YPWgHLGM2YiuTjP3Lf9L6O5SJECBZMQoTwAFnfhOBdoVtfHoz_1YD1cT993E8f99PDftHydMo1wZqq8Ka2ZTj7hGJKcBy5h4ErnXPnd2yHJaV_UVd15Q</recordid><startdate>200606</startdate><enddate>200606</enddate><creator>Kashikhin, V.S.</creator><creator>Andreev, N.</creator><creator>Kashikhin, V.V.</creator><creator>Novitski, I.</creator><creator>Zlobin, A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>200606</creationdate><title>Superconducting Double Dipole High Field Magnet</title><author>Kashikhin, V.S. ; Andreev, N. ; Kashikhin, V.V. ; Novitski, I. ; Zlobin, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c267t-8a513e9c6d55a788901a4ec32f771819632e7e722f61a8b4a142b9fc2f41b5b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Accelerator magnets</topic><topic>Accelerators</topic><topic>Apertures</topic><topic>Applied sciences</topic><topic>Coils</topic><topic>Current density</topic><topic>Design engineering</topic><topic>Dipole</topic><topic>Dipoles</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electromagnets</topic><topic>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</topic><topic>Electronics</topic><topic>Electrons</topic><topic>Exact sciences and technology</topic><topic>High field magnets</topic><topic>Magnetic fields</topic><topic>Magnetic separation</topic><topic>Mathematical analysis</topic><topic>Niobium</topic><topic>Power electronics, power supplies</topic><topic>Superconducting coils</topic><topic>superconducting magnet</topic><topic>Superconducting magnets</topic><topic>Superconductivity</topic><topic>Superconductors</topic><topic>Testing</topic><topic>Tin</topic><topic>Various equipment and components</topic><topic>Winding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kashikhin, V.S.</creatorcontrib><creatorcontrib>Andreev, N.</creatorcontrib><creatorcontrib>Kashikhin, V.V.</creatorcontrib><creatorcontrib>Novitski, I.</creatorcontrib><creatorcontrib>Zlobin, A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kashikhin, V.S.</au><au>Andreev, N.</au><au>Kashikhin, V.V.</au><au>Novitski, I.</au><au>Zlobin, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superconducting Double Dipole High Field Magnet</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2006-06</date><risdate>2006</risdate><volume>16</volume><issue>2</issue><spage>1274</spage><epage>1277</epage><pages>1274-1277</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>Recent progress in Nb 3 Sn superconductor technology provides the base for increasing magnet field in accelerator magnets up to 15-16 T. The work on such magnets based on both block-type and shell-type coils are in progress at Fermilab, LBNL and elsewhere. One of the novel approaches to the design of this magnet is to split the magnet winding into two separate dipole windings powered in series or separately. Each winding generates a homogeneous magnetic field in the magnet aperture. The paper presents conceptual magnetic and mechanical designs of 15 T double dipole magnets and discusses several scenarios of magnet powering. The inner dipole winding is based on the 2-layer Nb 3 Sn coils previously developed and tested at Fermilab. The outer dipole winding is made of sub-sized Nb 3 Sn cable and has about two times higher current density. Both windings have the shell-type configuration. For the different powering scenarios the results of calculation of the field quality, coil magnetization effects, and the stress analysis are presented</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TASC.2005.864299</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2006-06, Vol.16 (2), p.1274-1277
issn 1051-8223
1558-2515
language eng
recordid cdi_proquest_miscellaneous_914643649
source IEEE Xplore (Online service)
subjects Accelerator magnets
Accelerators
Apertures
Applied sciences
Coils
Current density
Design engineering
Dipole
Dipoles
Electrical engineering. Electrical power engineering
Electromagnets
Electronic equipment and fabrication. Passive components, printed wiring boards, connectics
Electronics
Electrons
Exact sciences and technology
High field magnets
Magnetic fields
Magnetic separation
Mathematical analysis
Niobium
Power electronics, power supplies
Superconducting coils
superconducting magnet
Superconducting magnets
Superconductivity
Superconductors
Testing
Tin
Various equipment and components
Winding
title Superconducting Double Dipole High Field Magnet
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A11%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superconducting%20Double%20Dipole%20High%20Field%20Magnet&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Kashikhin,%20V.S.&rft.date=2006-06&rft.volume=16&rft.issue=2&rft.spage=1274&rft.epage=1277&rft.pages=1274-1277&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2005.864299&rft_dat=%3Cproquest_ieee_%3E2544630351%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c267t-8a513e9c6d55a788901a4ec32f771819632e7e722f61a8b4a142b9fc2f41b5b53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=912207481&rft_id=info:pmid/&rft_ieee_id=1643083&rfr_iscdi=true