Loading…

High Precision Constrained Grasping with Cooperative Adaptive Handcontrol

A method for high precision constrained object manoeuvering for non-redundant rigid multifinger hands is proposed. A passivity-based adaptive cooperative control scheme carries out compensation of all uncertain inertial and dynamic friction forces to guarantee asymptotic tracking of all contact forc...

Full description

Saved in:
Bibliographic Details
Published in:Journal of intelligent & robotic systems 2001-11, Vol.32 (3), p.235-254
Main Authors: Parra-vega, V, Rodríguez-angeles, A, Arimoto, S, Hirzinger, G
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c258t-f93d87b4fb578dbbab360c9f6698d043f945924b89bf3379434f49177b3dd7903
cites
container_end_page 254
container_issue 3
container_start_page 235
container_title Journal of intelligent & robotic systems
container_volume 32
creator Parra-vega, V
Rodríguez-angeles, A
Arimoto, S
Hirzinger, G
description A method for high precision constrained object manoeuvering for non-redundant rigid multifinger hands is proposed. A passivity-based adaptive cooperative control scheme carries out compensation of all uncertain inertial and dynamic friction forces to guarantee asymptotic tracking of all contact forces and joint position-orientation trajectories over orthogonal force- and position-based impedance error manifolds. Optimal internal and external force trajectories are obtained to minimize the contact forces onto the constrained object while exerting a given desired contact force onto the environment. The simulation study of two robot fingers manipulating a constrained object for combined fast and slow velocity regimes shows that when the dynamic friction compensation is turned on tracking errors decrease tenfold.[PUBLICATION ABSTRACT]
doi_str_mv 10.1023/A:1013987209547
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_914646207</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2420141931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c258t-f93d87b4fb578dbbab360c9f6698d043f945924b89bf3379434f49177b3dd7903</originalsourceid><addsrcrecordid>eNpdjkFLAzEUhIMoWKtnr4sXT6svm2yS560UbQsFPei5JJukTVmTNdnq37eoJ0_zwXwMQ8g1hTsKDbufPVCgDJVsAFsuT8iEtpLVwAFPyQSwoTU0KM7JRSl7AEDV4oSslmG7q16y60IJKVbzFMuYdYjOVousyxDitvoK4-7YpMFlPYZPV82sHn5gqaPtUhxz6i_Jmdd9cVd_OSVvT4-v82W9fl6s5rN13TWtGmuPzCppuDetVNYYbZiADr0QqCxw5pG32HCj0HjGJHLGPUcqpWHWSgQ2Jbe_u0NOHwdXxs17KJ3rex1dOpQNUi64aEAezZt_5j4dcjye2yhFheScUvYNvFZbkQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>881674411</pqid></control><display><type>article</type><title>High Precision Constrained Grasping with Cooperative Adaptive Handcontrol</title><source>Springer Link</source><creator>Parra-vega, V ; Rodríguez-angeles, A ; Arimoto, S ; Hirzinger, G</creator><creatorcontrib>Parra-vega, V ; Rodríguez-angeles, A ; Arimoto, S ; Hirzinger, G</creatorcontrib><description>A method for high precision constrained object manoeuvering for non-redundant rigid multifinger hands is proposed. A passivity-based adaptive cooperative control scheme carries out compensation of all uncertain inertial and dynamic friction forces to guarantee asymptotic tracking of all contact forces and joint position-orientation trajectories over orthogonal force- and position-based impedance error manifolds. Optimal internal and external force trajectories are obtained to minimize the contact forces onto the constrained object while exerting a given desired contact force onto the environment. The simulation study of two robot fingers manipulating a constrained object for combined fast and slow velocity regimes shows that when the dynamic friction compensation is turned on tracking errors decrease tenfold.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0921-0296</identifier><identifier>EISSN: 1573-0409</identifier><identifier>DOI: 10.1023/A:1013987209547</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Asymptotic properties ; Compensation ; Constraints ; Contact ; Dynamics ; Friction ; Robots ; Trajectories</subject><ispartof>Journal of intelligent &amp; robotic systems, 2001-11, Vol.32 (3), p.235-254</ispartof><rights>Kluwer Academic Publishers 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c258t-f93d87b4fb578dbbab360c9f6698d043f945924b89bf3379434f49177b3dd7903</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Parra-vega, V</creatorcontrib><creatorcontrib>Rodríguez-angeles, A</creatorcontrib><creatorcontrib>Arimoto, S</creatorcontrib><creatorcontrib>Hirzinger, G</creatorcontrib><title>High Precision Constrained Grasping with Cooperative Adaptive Handcontrol</title><title>Journal of intelligent &amp; robotic systems</title><description>A method for high precision constrained object manoeuvering for non-redundant rigid multifinger hands is proposed. A passivity-based adaptive cooperative control scheme carries out compensation of all uncertain inertial and dynamic friction forces to guarantee asymptotic tracking of all contact forces and joint position-orientation trajectories over orthogonal force- and position-based impedance error manifolds. Optimal internal and external force trajectories are obtained to minimize the contact forces onto the constrained object while exerting a given desired contact force onto the environment. The simulation study of two robot fingers manipulating a constrained object for combined fast and slow velocity regimes shows that when the dynamic friction compensation is turned on tracking errors decrease tenfold.[PUBLICATION ABSTRACT]</description><subject>Asymptotic properties</subject><subject>Compensation</subject><subject>Constraints</subject><subject>Contact</subject><subject>Dynamics</subject><subject>Friction</subject><subject>Robots</subject><subject>Trajectories</subject><issn>0921-0296</issn><issn>1573-0409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNpdjkFLAzEUhIMoWKtnr4sXT6svm2yS560UbQsFPei5JJukTVmTNdnq37eoJ0_zwXwMQ8g1hTsKDbufPVCgDJVsAFsuT8iEtpLVwAFPyQSwoTU0KM7JRSl7AEDV4oSslmG7q16y60IJKVbzFMuYdYjOVousyxDitvoK4-7YpMFlPYZPV82sHn5gqaPtUhxz6i_Jmdd9cVd_OSVvT4-v82W9fl6s5rN13TWtGmuPzCppuDetVNYYbZiADr0QqCxw5pG32HCj0HjGJHLGPUcqpWHWSgQ2Jbe_u0NOHwdXxs17KJ3rex1dOpQNUi64aEAezZt_5j4dcjye2yhFheScUvYNvFZbkQ</recordid><startdate>20011101</startdate><enddate>20011101</enddate><creator>Parra-vega, V</creator><creator>Rodríguez-angeles, A</creator><creator>Arimoto, S</creator><creator>Hirzinger, G</creator><general>Springer Nature B.V</general><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>F28</scope></search><sort><creationdate>20011101</creationdate><title>High Precision Constrained Grasping with Cooperative Adaptive Handcontrol</title><author>Parra-vega, V ; Rodríguez-angeles, A ; Arimoto, S ; Hirzinger, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c258t-f93d87b4fb578dbbab360c9f6698d043f945924b89bf3379434f49177b3dd7903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Asymptotic properties</topic><topic>Compensation</topic><topic>Constraints</topic><topic>Contact</topic><topic>Dynamics</topic><topic>Friction</topic><topic>Robots</topic><topic>Trajectories</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parra-vega, V</creatorcontrib><creatorcontrib>Rodríguez-angeles, A</creatorcontrib><creatorcontrib>Arimoto, S</creatorcontrib><creatorcontrib>Hirzinger, G</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>Journal of intelligent &amp; robotic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parra-vega, V</au><au>Rodríguez-angeles, A</au><au>Arimoto, S</au><au>Hirzinger, G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High Precision Constrained Grasping with Cooperative Adaptive Handcontrol</atitle><jtitle>Journal of intelligent &amp; robotic systems</jtitle><date>2001-11-01</date><risdate>2001</risdate><volume>32</volume><issue>3</issue><spage>235</spage><epage>254</epage><pages>235-254</pages><issn>0921-0296</issn><eissn>1573-0409</eissn><abstract>A method for high precision constrained object manoeuvering for non-redundant rigid multifinger hands is proposed. A passivity-based adaptive cooperative control scheme carries out compensation of all uncertain inertial and dynamic friction forces to guarantee asymptotic tracking of all contact forces and joint position-orientation trajectories over orthogonal force- and position-based impedance error manifolds. Optimal internal and external force trajectories are obtained to minimize the contact forces onto the constrained object while exerting a given desired contact force onto the environment. The simulation study of two robot fingers manipulating a constrained object for combined fast and slow velocity regimes shows that when the dynamic friction compensation is turned on tracking errors decrease tenfold.[PUBLICATION ABSTRACT]</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1023/A:1013987209547</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0921-0296
ispartof Journal of intelligent & robotic systems, 2001-11, Vol.32 (3), p.235-254
issn 0921-0296
1573-0409
language eng
recordid cdi_proquest_miscellaneous_914646207
source Springer Link
subjects Asymptotic properties
Compensation
Constraints
Contact
Dynamics
Friction
Robots
Trajectories
title High Precision Constrained Grasping with Cooperative Adaptive Handcontrol
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A31%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20Precision%20Constrained%20Grasping%20with%20Cooperative%20Adaptive%20Handcontrol&rft.jtitle=Journal%20of%20intelligent%20&%20robotic%20systems&rft.au=Parra-vega,%20V&rft.date=2001-11-01&rft.volume=32&rft.issue=3&rft.spage=235&rft.epage=254&rft.pages=235-254&rft.issn=0921-0296&rft.eissn=1573-0409&rft_id=info:doi/10.1023/A:1013987209547&rft_dat=%3Cproquest%3E2420141931%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c258t-f93d87b4fb578dbbab360c9f6698d043f945924b89bf3379434f49177b3dd7903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=881674411&rft_id=info:pmid/&rfr_iscdi=true