Loading…

Effect of ferrous/ferric ions molar ratio on reaction mechanism for hydrothermal synthesis of magnetite nanoparticles

Magnetite nanoparticles were prepared by hydrothermal synthesis under various initial ferrous/ferric molar ratios without adding any oxidizing and reducing agents in order to clarify effects of the molar ratio on the reaction mechanism for the formation of magnetite nanoparticles. The magnetite nano...

Full description

Saved in:
Bibliographic Details
Published in:Bulletin of materials science 2008-10, Vol.31 (5), p.713-717
Main Authors: Mizutani, N., Iwasaki, T., Watano, S., Yanagida, T., Tanaka, H., Kawai, T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Magnetite nanoparticles were prepared by hydrothermal synthesis under various initial ferrous/ferric molar ratios without adding any oxidizing and reducing agents in order to clarify effects of the molar ratio on the reaction mechanism for the formation of magnetite nanoparticles. The magnetite nanoparticles prepared were characterized by a scanning electron microscope, powder X-ray diffractometer, and superconducting quantum interference device (SQUID). At the molar ratio corresponding to the stoichiometric ratio in the synthesis reaction of magnetite from ferrous hydroxide and goethite, the nucleation of magnetite crystals progressed rapidly in an initial stage of the hydrothermal synthesis, resulting in formation of the magnetite nanoparticles having a smaller size and a lower crystallinity. On the other hand, at higher molar ratios, the particle size and crystallinity increased with increasing molar ratio because using surplus ferrous hydroxide the crystallites of magnetite nanoparticles grew up slowly under hydrothermal conditions according to the Schikorr reaction. The magnetite nanoparticles prepared under various molar ratios had good magnetic properties regardless of the molar ratio.
ISSN:0250-4707
0973-7669
DOI:10.1007/s12034-008-0112-3