Loading…

Laboratory investigation of utilizing high percentage of RAP in rubberized asphalt mixture

The utilization of crumb rubber and reclaimed asphalt pavement (RAP) has proven to be economical, environmentally sound and effective in increasing the performance properties of the asphalt mixtures. The objective of this research was to investigate the laboratory engineering behavior characteristic...

Full description

Saved in:
Bibliographic Details
Published in:Materials and structures 2010, Vol.43 (1-2), p.223-233
Main Authors: Xiao, Feipeng, Amirkhanian, Serji N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The utilization of crumb rubber and reclaimed asphalt pavement (RAP) has proven to be economical, environmentally sound and effective in increasing the performance properties of the asphalt mixtures. The objective of this research was to investigate the laboratory engineering behavior characteristics of the rubberized asphalt binders and mixtures made with PG 64-22 and a softer binder (PG 52-28) containing a high percentage of RAP (30%). Some of the testing used for this research included viscosity, dynamic shear rheometer (DSR), bending beam rheometer (BBR), indirect tensile strength (ITS), resilient modulus, and fatigue life evaluations. The experimental design included the use of two aggregate and RAP sources, two virgin binder grades (PG 64-22 and PG 52-28), two types of crumb rubber (ambient and cryogenic), and four rubber contents (0%, 5%, 10%, and 15%). The results indicated that: (1) the crumb rubber improved the aging resistance of the aged binder and prolonged the fatigue life of the mixtures containing 0% RAP, in addition, results indicated a decrease of ITS and resilient modulus values was found as the rubber content increased, regardless of rubber type; (2) the utilization of softer binder decreased the influence of aged binder and decreased the resilient modulus values of the mixtures. In most cases, regardless of rubber types, the rubberized mixtures containing 30% RAP made with PG 52-28 binder did not show a significant increase in fatigue life with those made with PG 64-22 binder.
ISSN:1359-5997
1871-6873
DOI:10.1617/s11527-009-9483-1